Skip to content

gnobitab/FuseDream

Repository files navigation

FuseDream

This repo contains code for our paper (paper link):

FuseDream: Training-Free Text-to-Image Generation with Improved CLIP GAN Space Optimization

by Xingchao Liu, Chengyue Gong, Lemeng Wu, Shujian Zhang, Hao Su and Qiang Liu from UCSD and UT Austin.

FuseDream

Introduction

FuseDream uses pre-trained GANs (we support BigGAN-256 and BigGAN-512 for now) and CLIP to achieve high-fidelity text-to-image generation.

Requirements

Please use pip or conda to install the following packages: PyTorch==1.7.1, torchvision==0.8.2, lpips==0.1.4 and also the requirements from BigGAN.

Getting Started

We transformed the pre-trained weights of BigGAN from TFHub to PyTorch. To save your time, you can download the transformed BigGAN checkpoints from:

https://drive.google.com/drive/folders/1nJ3HmgYgeA9NZr-oU-enqbYeO7zBaANs?usp=sharing

Put the checkpoints into ./BigGAN_utils/weights/

Run the following command to generate images from text query:

python fusedream_generator.py --text 'YOUR TEXT' --seed YOUR_SEED

For example, to get an image of a blue dog:

python fusedream_generator.py --text 'A photo of a blue dog.' --seed 1234

The generated image will be stored in ./samples

Colab Notebook

For a quick test of FuseDream, we provide Colab notebooks for FuseDream(Single Image) and FuseDream-Composition(TODO). Have fun!

Citations

If you use the code, please cite:

@inproceedings{
brock2018large,
title={Large Scale {GAN} Training for High Fidelity Natural Image Synthesis},
author={Andrew Brock and Jeff Donahue and Karen Simonyan},
booktitle={International Conference on Learning Representations},
year={2019},
url={https://openreview.net/forum?id=B1xsqj09Fm},
}

and

@misc{
liu2021fusedream,
title={FuseDream: Training-Free Text-to-Image Generation with Improved CLIP GAN Space Optimization}, 
author={Xingchao Liu and Chengyue Gong and Lemeng Wu and Shujian Zhang and Hao Su and Qiang Liu},
year={2021},
eprint={2112.01573},
archivePrefix={arXiv},
primaryClass={cs.CV}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published