Neurocomputing | Paper | Bibtex |
(Released on April, 2023)
Performance comparison for micro-expression spotting.
Performance comparison for micro-expression recognition.
Performance comparison for micro-expression analysis.
Step 1) Download the processed_data from:
hidden at the moment
The files are structured as follows:
├─annotation
├─pretrained_weights
├─Utils
├─dataloader.py
├─load_data.py
├─main.py
├─network.py
├─prepare_data.py
├─requirements.txt
├─train.py
├─train_utils.py
├─processed_data├─CASME_cube_recog_rgbd-flow.pkl
└─CASME_cube_spot_rgbd-flow.pkl
Step 2) Installation of packages using pip
pip install -r requirements.txt
Step 3) Network Training and Evaluation
python main.py
--train (True/False)
--emotion (4/7)
If you find this work useful for your research, please cite
@article{liong2024sfamnet,
title={SFAMNet: A scene flow attention-based micro-expression network},
author={Liong, Gen-Bing and Liong, Sze-Teng and Chan, Chee Seng and See, John},
journal={Neurocomputing},
volume={566},
pages={126998},
year={2024},
publisher={Elsevier}
}
Suggestions and opinions on this work (both positive and negative) are greatly welcomed. Please contact the authors by sending an email to
[email protected]
or cs.chan at um.edu.my
.
The project is open source under BSD-3 license (see the LICENSE
file).
©2023 Center of Image and Signal Processing, Faculty of Computer Science and Information Technology, Universiti Malaya.