- Create, modify, parse, import or export JSON Web Keys (JWK) and JSON Web Keys Set (JWKS)
- Create, modify, parse, validate or serialize JSON Web Signatures (JWS)
- Create, modify, parse, validate or serialize JSON Web Encryption (JWE)
- Create, modify, parse, validate or serialize JSON Web Token (JWT)
JWT Relies on JWS and JWE functions, so it supports the same functionalities as the other 2. JWT functionalities also support nesting serialization (JWE nested in a JWS or the opposite).
- Supported Cryptographic Algorithms (
alg
) for Digital Signatures and MACs:
"alg" Param Value | Digital Signature or MAC Algorithm | Supported |
---|---|---|
HS256 | HMAC using SHA-256 | YES |
HS384 | HMAC using SHA-384 | YES |
HS512 | HMAC using SHA-512 | YES |
RS256 | RSASSA-PKCS1-v1_5 using SHA-256 | YES |
RS384 | RSASSA-PKCS1-v1_5 using SHA-384 | YES |
RS512 | RSASSA-PKCS1-v1_5 using SHA-512 | YES |
ES256 | ECDSA using P-256 and SHA-256 | YES(1) |
ES384 | ECDSA using P-384 and SHA-384 | YES(1) |
ES512 | ECDSA using P-521 and SHA-512 | YES(1) |
PS256 | RSASSA-PSS using SHA-256 and MGF1 with SHA-256 | YES(1) |
PS384 | RSASSA-PSS using SHA-384 and MGF1 with SHA-384 | YES(1) |
PS512 | RSASSA-PSS using SHA-512 and MGF1 with SHA-512 | YES(1) |
none | No digital signature or MAC performed | YES |
EdDSA | Digital Signature with Ed25519 Elliptic Curve | YES(1) |
ES256K | Digital Signature with secp256k1 Curve Key | NO |
(1) GnuTLS 3.6 minimum is required for ECDSA, Ed25519 (EdDSA) and RSA-PSS signatures.
- Supported Encryption Algorithm (
enc
) for JWE payload encryption:
"enc" Param Value | Content Encryption Algorithm | Supported |
---|---|---|
A128CBC-HS256 | AES_128_CBC_HMAC_SHA_256 authenticated encryption algorithm, as defined in Section 5.2.3 | YES |
A192CBC-HS384 | AES_192_CBC_HMAC_SHA_384 authenticated encryption algorithm, as defined in Section 5.2.4 | YES |
A256CBC-HS512 | AES_256_CBC_HMAC_SHA_512 authenticated encryption algorithm, as defined in Section 5.2.5 | YES |
A128GCM | AES GCM using 128-bit key | YES |
A192GCM | AES GCM using 192-bit key | YES (2) |
A256GCM | AES GCM using 256-bit key | YES |
(2) GnuTLS 3.6.14 minimum is required for A192GCM
enc.
- Supported Cryptographic Algorithms (
alg
) for Key Management:
"alg" Param Value | Key Management Algorithm | Supported |
---|---|---|
RSA1_5 | RSAES-PKCS1-v1_5 | YES |
RSA-OAEP | RSAES OAEP using default parameters | YES(3) |
RSA-OAEP-256 | RSAES OAEP using SHA-256 and MGF1 with SHA-256 | YES |
A128KW | AES Key Wrap with default initial value using 128-bit key | YES(3) |
A192KW | AES Key Wrap with default initial value using 192-bit key | YES(3) |
A256KW | AES Key Wrap with default initial value using 256-bit key | YES(3) |
dir | Direct use of a shared symmetric key as the CEK | YES |
ECDH-ES | Elliptic Curve Diffie-Hellman Ephemeral Static key agreement using Concat KDF | YES(4) |
ECDH-ES A128KW | ECDH-ES using Concat KDF and CEK wrapped with "A128KW" | YES(4) |
ECDH-ES A192KW | ECDH-ES using Concat KDF and CEK wrapped with "A192KW" | YES(4) |
ECDH-ES A256KW | ECDH-ES using Concat KDF and CEK wrapped with "A256KW" | YES(4) |
A128GCMKW | Key wrapping with AES GCM using 128-bit key | YES |
A192GCMKW | Key wrapping with AES GCM using 192-bit key | YES(5) |
A256GCMKW | Key wrapping with AES GCM using 256-bit key | YES |
PBES2-HS256 A128KW | PBES2 with HMAC SHA-256 and "A128KW" wrapping | YES(5) |
PBES2-HS384 A192KW | PBES2 with HMAC SHA-384 and "A192KW" wrapping | YES(5) |
PBES2-HS512 A256KW | PBES2 with HMAC SHA-512 and "A256KW" wrapping | YES(5) |
(3) Nettle 3.4 minimum is required for RSA-OAEP and AES key Wrap
(4) Nettle 3.6 minimum is required for ECDH-ES
(5) GnuTLS 3.6.14 minimum is required for A192GCMKW
, PBES2-HS256 A128KW
, PBES2-HS384 A192KW
and PBES2-HS512 A256KW
key wrapping algorithms.
This command-line program can be used to:
- Generate and/or parse keys and output the result in a JWKS or a public/private pair of JWKS files.
- Parse, decrypt, and/or verify signature of a JWT, using given key
- Serialize a JWT, the JWT can be signed, encrypted or nested
Example commands to generate a RSA2048 key pair, serialize a JWT signed with the private key, then parse the serialized token and verifies the signature with the public key.
$ rnbyc -j -g RSA2048 -o priv.jwks -p pub.jwks
$ rnbyc -s '{"iss":"https://rhonabwy.tld","aud":"abcxyz1234"}' -K priv.jwks -a RS256
eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6ImVNdnI3bktBX2I5QUI4NGpMU05zTFFKZHRmdHpadnllV2M1V0VVMjhnRFkifQ.eyJpc3MiOiJodHRwczovL3Job25hYnd5LnRsZCIsImF1ZCI6ImFiY3h5ejEyMzQifQ.j6v-yxcWvHhyLIc-r3Nzn5rCF9yeJJzgyLSHW_10wREfckspbzf8UTof5Zsrwg8JvKNlJ4Tt4ZffJC4BkkehdBYXPrgcfq9NtvNYsRmAdiNJhOXtZCU9j9X89j2xhY7pRBgWENI9c3730cmAUgaC-IUKsoNRw_dd-eboyrgYKIzUCYRnuwqDB31T2oUSVjy6CckoenyoeHJhHg-x384G-g4ovP1l-L4YpjgCyr6BR8mjBFwHU56MP6hNN299HpUd56usQ3vMn7z5hL6QqE92qz-SsJBySrv8whLWjjN9J4Wq5g3_R7Qw00x60bFnuCDhPBjg3EPXXGqlI0x0vwgwHw
$ rnbyc -P pub.jwks -t eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6ImVNdnI3bktBX2I5QUI4NGpMU05zTFFKZHRmdHpadnllV2M1V0VVMjhnRFkifQ.eyJpc3MiOiJodHRwczovL3Job25hYnd5LnRsZCIsImF1ZCI6ImFiY3h5ejEyMzQifQ.j6v-yxcWvHhyLIc-r3Nzn5rCF9yeJJzgyLSHW_10wREfckspbzf8UTof5Zsrwg8JvKNlJ4Tt4ZffJC4BkkehdBYXPrgcfq9NtvNYsRmAdiNJhOXtZCU9j9X89j2xhY7pRBgWENI9c3730cmAUgaC-IUKsoNRw_dd-eboyrgYKIzUCYRnuwqDB31T2oUSVjy6CckoenyoeHJhHg-x384G-g4ovP1l-L4YpjgCyr6BR8mjBFwHU56MP6hNN299HpUd56usQ3vMn7z5hL6QqE92qz-SsJBySrv8whLWjjN9J4Wq5g3_R7Qw00x60bFnuCDhPBjg3EPXXGqlI0x0vwgwHw
Token signature verified
{
"iss": "https://rhonabwy.tld",
"aud": "abcxyz1234"
}
Check its documentation
Documentation is available in the documentation page: https://babelouest.github.io/rhonabwy/
Example program to parse and verify the signature of a JWT using its public key in JWK format:
/**
* To compile this program run:
* gcc -o demo_rhonabwy demo_rhonabwy.c -lrhonabwy
*/
#include <stdio.h>
#include <rhonabwy.h>
int main(void) {
const char token[] = "eyJ0eXAiOiJKV1QiLCJhbGciOiJFUzI1NiIsImtpZCI6IjEifQ." // Header
"eyJzdHIiOiJwbG9wIiwiaW50Ijo0Miwib2JqIjp0cnVlfQ." // Claims
"ooXNEt3JWFGMuvkGUM-szUOU1QTu4DvyC3qQP64UGeeJQuMGupBCVATnGkiqNLiPSJ9uBsjZbyUrWe8z7Iag_A"; // Signature
const char jwk_pubkey_ecdsa_str[] = "{"
"\"kty\":\"EC\","
"\"crv\":\"P-256\","
"\"alg\":\"ES256\","
"\"x\":\"MKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4\","
"\"y\":\"4Etl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM\","
"\"kid\":\"1\","
"\"use\":\"sig\""
"}";
unsigned char output[2048];
size_t output_len = 2048;
jwk_t * jwk = NULL;
jwt_t * jwt = NULL;
char * claims;
if ((jwk = r_jwk_quick_import(R_IMPORT_JSON_STR, jwk_pubkey_ecdsa_str)) != NULL && (jwt = r_jwt_quick_parse(token, R_PARSE_NONE, 0)) != NULL) {
if (r_jwk_export_to_pem_der(jwk, R_FORMAT_PEM, output, &output_len, 0) == RHN_OK) {
printf("Exported key:\n%.*s\n", (int)output_len, output);
if (r_jwt_verify_signature(jwt, jwk, 0) == RHN_OK) {
claims = r_jwt_get_full_claims_str(jwt);
printf("Verified payload:\n%s\n", claims);
r_free(claims);
} else {
fprintf(stderr, "Error r_jwt_verify_signature\n");
}
} else {
fprintf(stderr, "Error r_jwk_export_to_pem_der\n");
}
} else {
fprintf(stderr, "Error parsing\n");
}
r_jwk_free(jwk);
r_jwt_free(jwt);
return 0;
}
Some example programs are available in the examples directory.
Rhonabwy is available in the following distributions.
Rhonabwy is based on Nettle, GnuTLS, Jansson, zlib, libcurl and libsystemd (if possible), you must install those libraries first before building Rhonabwy.
You also need check and Ulfius to run the tests.
Those libraries are included in the package rhonabwy-dev-full_{x.x.x}_{OS}_{ARCH}.tar.gz
in the Latest release page. If you're building with CMake, they will be automatically downloaded and installed if missing.
You can install Rhonabwy with a pre-compiled package available in the release pages.
The rhonabwy-dev-full
contain 4 different packages:
- liborcania-dev_x.x.x_.ext
- libyder-dev_y.y.y_.ext
- libulfius-dev_z.z.z_.ext
- librhonabwy-dev_a.a.a_.ext
You only need to install liborcania-dev_*
, libyder-dev_*
for librhonabwy-dev_*
to work. libulfius-dev_*
isn't required unless you want to run the test suite.
CMake minimum 3.5 is required.
Last Rhonabwy release: https://github.com/babelouest/rhonabwy/releases/latest/
Run the CMake script in a sub-directory, example:
$ cd <rhonabwy_source>
$ mkdir build
$ cd build
$ cmake ..
$ make && sudo make install
The available options for CMake are:
-DWITH_JOURNALD=[on|off]
(defaulton
): Build with journald (SystemD) support-BUILD_RHONABWY_TESTING=[on|off]
(defaultoff
): Build unit tests-DINSTALL_HEADER=[on|off]
(defaulton
): Install header filerhonabwy.h
-DBUILD_RPM=[on|off]
(defaultoff
): Build RPM package when runningmake package
-DCMAKE_BUILD_TYPE=[Debug|Release]
(defaultRelease
): Compile with debugging symbols or not-DBUILD_STATIC=[on|off]
(defaultoff
): Compile static library-DBUILD_RHONABWY_DOCUMENTATION=[on|off]
(defaultoff
): Build documentation with doxygen-DWITH_CURL=[on|off]
(defaulton
): Use libcurl to download remote content
Download Rhonabwy from GitHub repository, compile and install.
Last Rhonabwy release: https://github.com/babelouest/rhonabwy/releases/latest/
$ cd rhonabwy/src
$ make
$ sudo make install
To disable curl library on build (to avoid its dependencies), you can pass the option DISABLE_CURL=1
to the make command.
$ cd rhonabwy/src
$ make DISABLE_CURL=1
$ sudo make install
By default, the shared library and the header file will be installed in the /usr/local
location. To change this setting, you can modify the DESTDIR
value in the src/Makefile
.
Example: install Rhonabwy in /tmp/lib directory
$ cd src
$ make && make DESTDIR=/tmp install
You can install Rhonabwy without root permission if your user has write access to $(DESTDIR)
.
A ldconfig
command is executed at the end of the install, it will probably fail if you don't have root permission, but this is harmless.
If you choose to install Rhonabwy in another directory, you must set your environment variable LD_LIBRARY_PATH
properly.