forked from xtaci/kcp-go
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kcp.go
1086 lines (967 loc) · 24.7 KB
/
kcp.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
863
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// The MIT License (MIT)
//
// Copyright (c) 2015 xtaci
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
package kcp
import (
"encoding/binary"
"sync/atomic"
"time"
)
const (
IKCP_RTO_NDL = 30 // no delay min rto
IKCP_RTO_MIN = 100 // normal min rto
IKCP_RTO_DEF = 200
IKCP_RTO_MAX = 60000
IKCP_CMD_PUSH = 81 // cmd: push data
IKCP_CMD_ACK = 82 // cmd: ack
IKCP_CMD_WASK = 83 // cmd: window probe (ask)
IKCP_CMD_WINS = 84 // cmd: window size (tell)
IKCP_ASK_SEND = 1 // need to send IKCP_CMD_WASK
IKCP_ASK_TELL = 2 // need to send IKCP_CMD_WINS
IKCP_WND_SND = 32
IKCP_WND_RCV = 32
IKCP_MTU_DEF = 1400
IKCP_ACK_FAST = 3
IKCP_INTERVAL = 100
IKCP_OVERHEAD = 24
IKCP_DEADLINK = 20
IKCP_THRESH_INIT = 2
IKCP_THRESH_MIN = 2
IKCP_PROBE_INIT = 7000 // 7 secs to probe window size
IKCP_PROBE_LIMIT = 120000 // up to 120 secs to probe window
IKCP_SN_OFFSET = 12
)
// monotonic reference time point
var refTime time.Time = time.Now()
// currentMs returns current elapsed monotonic milliseconds since program startup
func currentMs() uint32 { return uint32(time.Since(refTime) / time.Millisecond) }
// output_callback is a prototype which ought capture conn and call conn.Write
type output_callback func(buf []byte, size int)
/* encode 8 bits unsigned int */
func ikcp_encode8u(p []byte, c byte) []byte {
p[0] = c
return p[1:]
}
/* decode 8 bits unsigned int */
func ikcp_decode8u(p []byte, c *byte) []byte {
*c = p[0]
return p[1:]
}
/* encode 16 bits unsigned int (lsb) */
func ikcp_encode16u(p []byte, w uint16) []byte {
binary.LittleEndian.PutUint16(p, w)
return p[2:]
}
/* decode 16 bits unsigned int (lsb) */
func ikcp_decode16u(p []byte, w *uint16) []byte {
*w = binary.LittleEndian.Uint16(p)
return p[2:]
}
/* encode 32 bits unsigned int (lsb) */
func ikcp_encode32u(p []byte, l uint32) []byte {
binary.LittleEndian.PutUint32(p, l)
return p[4:]
}
/* decode 32 bits unsigned int (lsb) */
func ikcp_decode32u(p []byte, l *uint32) []byte {
*l = binary.LittleEndian.Uint32(p)
return p[4:]
}
func _imin_(a, b uint32) uint32 {
if a <= b {
return a
}
return b
}
func _imax_(a, b uint32) uint32 {
if a >= b {
return a
}
return b
}
func _ibound_(lower, middle, upper uint32) uint32 {
return _imin_(_imax_(lower, middle), upper)
}
func _itimediff(later, earlier uint32) int32 {
return (int32)(later - earlier)
}
// segment defines a KCP segment
type segment struct {
conv uint32
cmd uint8
frg uint8
wnd uint16
ts uint32
sn uint32
una uint32
rto uint32
xmit uint32
resendts uint32
fastack uint32
acked uint32 // mark if the seg has acked
data []byte
}
// encode a segment into buffer
func (seg *segment) encode(ptr []byte) []byte {
ptr = ikcp_encode32u(ptr, seg.conv)
ptr = ikcp_encode8u(ptr, seg.cmd)
ptr = ikcp_encode8u(ptr, seg.frg)
ptr = ikcp_encode16u(ptr, seg.wnd)
ptr = ikcp_encode32u(ptr, seg.ts)
ptr = ikcp_encode32u(ptr, seg.sn)
ptr = ikcp_encode32u(ptr, seg.una)
ptr = ikcp_encode32u(ptr, uint32(len(seg.data)))
atomic.AddUint64(&DefaultSnmp.OutSegs, 1)
return ptr
}
// KCP defines a single KCP connection
type KCP struct {
conv, mtu, mss, state uint32
snd_una, snd_nxt, rcv_nxt uint32
ssthresh uint32
rx_rttvar, rx_srtt int32
rx_rto, rx_minrto uint32
snd_wnd, rcv_wnd, rmt_wnd, cwnd, probe uint32
interval, ts_flush uint32
nodelay, updated uint32
ts_probe, probe_wait uint32
dead_link, incr uint32
fastresend int32
nocwnd, stream int32
snd_queue []segment
rcv_queue []segment
snd_buf []segment
rcv_buf []segment
acklist []ackItem
buffer []byte
output output_callback
}
type ackItem struct {
sn uint32
ts uint32
}
// NewKCP create a new kcp state machine
//
// 'conv' must be equal in the connection peers, or else data will be silently rejected.
//
// 'output' function will be called whenever these is data to be sent on wire.
func NewKCP(conv uint32, output output_callback) *KCP {
kcp := new(KCP)
kcp.conv = conv
kcp.snd_wnd = IKCP_WND_SND
kcp.rcv_wnd = IKCP_WND_RCV
kcp.rmt_wnd = IKCP_WND_RCV
kcp.mtu = IKCP_MTU_DEF
kcp.mss = kcp.mtu - IKCP_OVERHEAD
kcp.buffer = make([]byte, kcp.mtu)
kcp.rx_rto = IKCP_RTO_DEF
kcp.rx_minrto = IKCP_RTO_MIN
kcp.interval = IKCP_INTERVAL
kcp.ts_flush = IKCP_INTERVAL
kcp.ssthresh = IKCP_THRESH_INIT
kcp.dead_link = IKCP_DEADLINK
kcp.output = output
return kcp
}
// newSegment creates a KCP segment
func (kcp *KCP) newSegment(size int) (seg segment) {
seg.data = xmitBuf.Get().([]byte)[:size]
return
}
// delSegment recycles a KCP segment
func (kcp *KCP) delSegment(seg *segment) {
if seg.data != nil {
xmitBuf.Put(seg.data)
seg.data = nil
}
}
// PeekSize checks the size of next message in the recv queue
func (kcp *KCP) PeekSize() (length int) {
if len(kcp.rcv_queue) == 0 {
return -1
}
seg := &kcp.rcv_queue[0]
if seg.frg == 0 {
return len(seg.data)
}
if len(kcp.rcv_queue) < int(seg.frg 1) {
return -1
}
for k := range kcp.rcv_queue {
seg := &kcp.rcv_queue[k]
length = len(seg.data)
if seg.frg == 0 {
break
}
}
return
}
// Receive data from kcp state machine
//
// Return number of bytes read.
//
// Return -1 when there is no readable data.
//
// Return -2 if len(buffer) is smaller than kcp.PeekSize().
func (kcp *KCP) Recv(buffer []byte) (n int) {
peeksize := kcp.PeekSize()
if peeksize < 0 {
return -1
}
if peeksize > len(buffer) {
return -2
}
var fast_recover bool
if len(kcp.rcv_queue) >= int(kcp.rcv_wnd) {
fast_recover = true
}
// merge fragment
count := 0
for k := range kcp.rcv_queue {
seg := &kcp.rcv_queue[k]
copy(buffer, seg.data)
buffer = buffer[len(seg.data):]
n = len(seg.data)
count
kcp.delSegment(seg)
if seg.frg == 0 {
break
}
}
if count > 0 {
kcp.rcv_queue = kcp.remove_front(kcp.rcv_queue, count)
}
// move available data from rcv_buf -> rcv_queue
count = 0
for k := range kcp.rcv_buf {
seg := &kcp.rcv_buf[k]
if seg.sn == kcp.rcv_nxt && len(kcp.rcv_queue) count < int(kcp.rcv_wnd) {
kcp.rcv_nxt
count
} else {
break
}
}
if count > 0 {
kcp.rcv_queue = append(kcp.rcv_queue, kcp.rcv_buf[:count]...)
kcp.rcv_buf = kcp.remove_front(kcp.rcv_buf, count)
}
// fast recover
if len(kcp.rcv_queue) < int(kcp.rcv_wnd) && fast_recover {
// ready to send back IKCP_CMD_WINS in ikcp_flush
// tell remote my window size
kcp.probe |= IKCP_ASK_TELL
}
return
}
// Send is user/upper level send, returns below zero for error
func (kcp *KCP) Send(buffer []byte) int {
var count int
if len(buffer) == 0 {
return -1
}
// append to previous segment in streaming mode (if possible)
if kcp.stream != 0 {
n := len(kcp.snd_queue)
if n > 0 {
seg := &kcp.snd_queue[n-1]
if len(seg.data) < int(kcp.mss) {
capacity := int(kcp.mss) - len(seg.data)
extend := capacity
if len(buffer) < capacity {
extend = len(buffer)
}
// grow slice, the underlying cap is guaranteed to
// be larger than kcp.mss
oldlen := len(seg.data)
seg.data = seg.data[:oldlen extend]
copy(seg.data[oldlen:], buffer)
buffer = buffer[extend:]
}
}
if len(buffer) == 0 {
return 0
}
}
if len(buffer) <= int(kcp.mss) {
count = 1
} else {
count = (len(buffer) int(kcp.mss) - 1) / int(kcp.mss)
}
if count > 255 {
return -2
}
if count == 0 {
count = 1
}
for i := 0; i < count; i {
var size int
if len(buffer) > int(kcp.mss) {
size = int(kcp.mss)
} else {
size = len(buffer)
}
seg := kcp.newSegment(size)
copy(seg.data, buffer[:size])
if kcp.stream == 0 { // message mode
seg.frg = uint8(count - i - 1)
} else { // stream mode
seg.frg = 0
}
kcp.snd_queue = append(kcp.snd_queue, seg)
buffer = buffer[size:]
}
return 0
}
func (kcp *KCP) update_ack(rtt int32) {
// https://tools.ietf.org/html/rfc6298
var rto uint32
if kcp.rx_srtt == 0 {
kcp.rx_srtt = rtt
kcp.rx_rttvar = rtt >> 1
} else {
delta := rtt - kcp.rx_srtt
kcp.rx_srtt = delta >> 3
if delta < 0 {
delta = -delta
}
if rtt < kcp.rx_srtt-kcp.rx_rttvar {
// if the new RTT sample is below the bottom of the range of
// what an RTT measurement is expected to be.
// give an 8x reduced weight versus its normal weighting
kcp.rx_rttvar = (delta - kcp.rx_rttvar) >> 5
} else {
kcp.rx_rttvar = (delta - kcp.rx_rttvar) >> 2
}
}
rto = uint32(kcp.rx_srtt) _imax_(kcp.interval, uint32(kcp.rx_rttvar)<<2)
kcp.rx_rto = _ibound_(kcp.rx_minrto, rto, IKCP_RTO_MAX)
}
func (kcp *KCP) shrink_buf() {
if len(kcp.snd_buf) > 0 {
seg := &kcp.snd_buf[0]
kcp.snd_una = seg.sn
} else {
kcp.snd_una = kcp.snd_nxt
}
}
func (kcp *KCP) parse_ack(sn uint32) {
if _itimediff(sn, kcp.snd_una) < 0 || _itimediff(sn, kcp.snd_nxt) >= 0 {
return
}
for k := range kcp.snd_buf {
seg := &kcp.snd_buf[k]
if sn == seg.sn {
// mark and free space, but leave the segment here,
// and wait until `una` to delete this, then we don't
// have to shift the segments behind forward,
// which is an expensive operation for large window
seg.acked = 1
kcp.delSegment(seg)
break
}
if _itimediff(sn, seg.sn) < 0 {
break
}
}
}
func (kcp *KCP) parse_fastack(sn, ts uint32) {
if _itimediff(sn, kcp.snd_una) < 0 || _itimediff(sn, kcp.snd_nxt) >= 0 {
return
}
for k := range kcp.snd_buf {
seg := &kcp.snd_buf[k]
if _itimediff(sn, seg.sn) < 0 {
break
} else if sn != seg.sn && _itimediff(seg.ts, ts) <= 0 {
seg.fastack
}
}
}
func (kcp *KCP) parse_una(una uint32) int {
count := 0
for k := range kcp.snd_buf {
seg := &kcp.snd_buf[k]
if _itimediff(una, seg.sn) > 0 {
kcp.delSegment(seg)
count
} else {
break
}
}
if count > 0 {
kcp.snd_buf = kcp.remove_front(kcp.snd_buf, count)
}
return count
}
// ack append
func (kcp *KCP) ack_push(sn, ts uint32) {
kcp.acklist = append(kcp.acklist, ackItem{sn, ts})
}
// returns true if data has repeated
func (kcp *KCP) parse_data(newseg segment) bool {
sn := newseg.sn
if _itimediff(sn, kcp.rcv_nxt kcp.rcv_wnd) >= 0 ||
_itimediff(sn, kcp.rcv_nxt) < 0 {
return true
}
n := len(kcp.rcv_buf) - 1
insert_idx := 0
repeat := false
for i := n; i >= 0; i-- {
seg := &kcp.rcv_buf[i]
if seg.sn == sn {
repeat = true
break
}
if _itimediff(sn, seg.sn) > 0 {
insert_idx = i 1
break
}
}
if !repeat {
// replicate the content if it's new
dataCopy := xmitBuf.Get().([]byte)[:len(newseg.data)]
copy(dataCopy, newseg.data)
newseg.data = dataCopy
if insert_idx == n 1 {
kcp.rcv_buf = append(kcp.rcv_buf, newseg)
} else {
kcp.rcv_buf = append(kcp.rcv_buf, segment{})
copy(kcp.rcv_buf[insert_idx 1:], kcp.rcv_buf[insert_idx:])
kcp.rcv_buf[insert_idx] = newseg
}
}
// move available data from rcv_buf -> rcv_queue
count := 0
for k := range kcp.rcv_buf {
seg := &kcp.rcv_buf[k]
if seg.sn == kcp.rcv_nxt && len(kcp.rcv_queue) count < int(kcp.rcv_wnd) {
kcp.rcv_nxt
count
} else {
break
}
}
if count > 0 {
kcp.rcv_queue = append(kcp.rcv_queue, kcp.rcv_buf[:count]...)
kcp.rcv_buf = kcp.remove_front(kcp.rcv_buf, count)
}
return repeat
}
// Input a packet into kcp state machine.
//
// 'regular' indicates it's a real data packet from remote, and it means it's not generated from ReedSolomon
// codecs.
//
// 'ackNoDelay' will trigger immediate ACK, but surely it will not be efficient in bandwidth
func (kcp *KCP) Input(data []byte, regular, ackNoDelay bool) int {
snd_una := kcp.snd_una
if len(data) < IKCP_OVERHEAD {
return -1
}
var latest uint32 // the latest ack packet
var flag int
var inSegs uint64
var windowSlides bool
for {
var ts, sn, length, una, conv uint32
var wnd uint16
var cmd, frg uint8
if len(data) < int(IKCP_OVERHEAD) {
break
}
data = ikcp_decode32u(data, &conv)
if conv != kcp.conv {
return -1
}
data = ikcp_decode8u(data, &cmd)
data = ikcp_decode8u(data, &frg)
data = ikcp_decode16u(data, &wnd)
data = ikcp_decode32u(data, &ts)
data = ikcp_decode32u(data, &sn)
data = ikcp_decode32u(data, &una)
data = ikcp_decode32u(data, &length)
if len(data) < int(length) {
return -2
}
if cmd != IKCP_CMD_PUSH && cmd != IKCP_CMD_ACK &&
cmd != IKCP_CMD_WASK && cmd != IKCP_CMD_WINS {
return -3
}
// only trust window updates from regular packets. i.e: latest update
if regular {
kcp.rmt_wnd = uint32(wnd)
}
if kcp.parse_una(una) > 0 {
windowSlides = true
}
kcp.shrink_buf()
if cmd == IKCP_CMD_ACK {
kcp.parse_ack(sn)
kcp.parse_fastack(sn, ts)
flag |= 1
latest = ts
} else if cmd == IKCP_CMD_PUSH {
repeat := true
if _itimediff(sn, kcp.rcv_nxt kcp.rcv_wnd) < 0 {
kcp.ack_push(sn, ts)
if _itimediff(sn, kcp.rcv_nxt) >= 0 {
var seg segment
seg.conv = conv
seg.cmd = cmd
seg.frg = frg
seg.wnd = wnd
seg.ts = ts
seg.sn = sn
seg.una = una
seg.data = data[:length] // delayed data copying
repeat = kcp.parse_data(seg)
}
}
if regular && repeat {
atomic.AddUint64(&DefaultSnmp.RepeatSegs, 1)
}
} else if cmd == IKCP_CMD_WASK {
// ready to send back IKCP_CMD_WINS in Ikcp_flush
// tell remote my window size
kcp.probe |= IKCP_ASK_TELL
} else if cmd == IKCP_CMD_WINS {
// do nothing
} else {
return -3
}
inSegs
data = data[length:]
}
atomic.AddUint64(&DefaultSnmp.InSegs, inSegs)
// update rtt with the latest ts
// ignore the FEC packet
if flag != 0 && regular {
current := currentMs()
if _itimediff(current, latest) >= 0 {
kcp.update_ack(_itimediff(current, latest))
}
}
// cwnd update when packet arrived
if kcp.nocwnd == 0 {
if _itimediff(kcp.snd_una, snd_una) > 0 {
if kcp.cwnd < kcp.rmt_wnd {
mss := kcp.mss
if kcp.cwnd < kcp.ssthresh {
kcp.cwnd
kcp.incr = mss
} else {
if kcp.incr < mss {
kcp.incr = mss
}
kcp.incr = (mss*mss)/kcp.incr (mss / 16)
if (kcp.cwnd 1)*mss <= kcp.incr {
if mss > 0 {
kcp.cwnd = (kcp.incr mss - 1) / mss
} else {
kcp.cwnd = kcp.incr mss - 1
}
}
}
if kcp.cwnd > kcp.rmt_wnd {
kcp.cwnd = kcp.rmt_wnd
kcp.incr = kcp.rmt_wnd * mss
}
}
}
}
if windowSlides { // if window has slided, flush
kcp.flush(false)
} else if ackNoDelay && len(kcp.acklist) > 0 { // ack immediately
kcp.flush(true)
}
return 0
}
func (kcp *KCP) wnd_unused() uint16 {
if len(kcp.rcv_queue) < int(kcp.rcv_wnd) {
return uint16(int(kcp.rcv_wnd) - len(kcp.rcv_queue))
}
return 0
}
// flush pending data
func (kcp *KCP) flush(ackOnly bool) uint32 {
var seg segment
seg.conv = kcp.conv
seg.cmd = IKCP_CMD_ACK
seg.wnd = kcp.wnd_unused()
seg.una = kcp.rcv_nxt
buffer := kcp.buffer
ptr := buffer
// makeSpace makes room for writing
makeSpace := func(space int) {
size := len(buffer) - len(ptr)
if size space > int(kcp.mtu) {
kcp.output(buffer, size)
ptr = buffer
}
}
// flush bytes in buffer if there is any
flushBuffer := func() {
size := len(buffer) - len(ptr)
if size > 0 {
kcp.output(buffer, size)
}
}
// flush acknowledges
for i, ack := range kcp.acklist {
makeSpace(IKCP_OVERHEAD)
// filter jitters caused by bufferbloat
if _itimediff(ack.sn, kcp.rcv_nxt) >= 0 || len(kcp.acklist)-1 == i {
seg.sn, seg.ts = ack.sn, ack.ts
ptr = seg.encode(ptr)
}
}
kcp.acklist = kcp.acklist[0:0]
if ackOnly { // flash remain ack segments
flushBuffer()
return kcp.interval
}
// probe window size (if remote window size equals zero)
if kcp.rmt_wnd == 0 {
current := currentMs()
if kcp.probe_wait == 0 {
kcp.probe_wait = IKCP_PROBE_INIT
kcp.ts_probe = current kcp.probe_wait
} else {
if _itimediff(current, kcp.ts_probe) >= 0 {
if kcp.probe_wait < IKCP_PROBE_INIT {
kcp.probe_wait = IKCP_PROBE_INIT
}
kcp.probe_wait = kcp.probe_wait / 2
if kcp.probe_wait > IKCP_PROBE_LIMIT {
kcp.probe_wait = IKCP_PROBE_LIMIT
}
kcp.ts_probe = current kcp.probe_wait
kcp.probe |= IKCP_ASK_SEND
}
}
} else {
kcp.ts_probe = 0
kcp.probe_wait = 0
}
// flush window probing commands
if (kcp.probe & IKCP_ASK_SEND) != 0 {
seg.cmd = IKCP_CMD_WASK
makeSpace(IKCP_OVERHEAD)
ptr = seg.encode(ptr)
}
// flush window probing commands
if (kcp.probe & IKCP_ASK_TELL) != 0 {
seg.cmd = IKCP_CMD_WINS
makeSpace(IKCP_OVERHEAD)
ptr = seg.encode(ptr)
}
kcp.probe = 0
// calculate window size
cwnd := _imin_(kcp.snd_wnd, kcp.rmt_wnd)
if kcp.nocwnd == 0 {
cwnd = _imin_(kcp.cwnd, cwnd)
}
// sliding window, controlled by snd_nxt && sna_una cwnd
newSegsCount := 0
for k := range kcp.snd_queue {
if _itimediff(kcp.snd_nxt, kcp.snd_una cwnd) >= 0 {
break
}
newseg := kcp.snd_queue[k]
newseg.conv = kcp.conv
newseg.cmd = IKCP_CMD_PUSH
newseg.sn = kcp.snd_nxt
kcp.snd_buf = append(kcp.snd_buf, newseg)
kcp.snd_nxt
newSegsCount
}
if newSegsCount > 0 {
kcp.snd_queue = kcp.remove_front(kcp.snd_queue, newSegsCount)
}
// calculate resent
resent := uint32(kcp.fastresend)
if kcp.fastresend <= 0 {
resent = 0xffffffff
}
// check for retransmissions
current := currentMs()
var change, lostSegs, fastRetransSegs, earlyRetransSegs uint64
minrto := int32(kcp.interval)
ref := kcp.snd_buf[:len(kcp.snd_buf)] // for bounds check elimination
for k := range ref {
segment := &ref[k]
needsend := false
if segment.acked == 1 {
continue
}
if segment.xmit == 0 { // initial transmit
needsend = true
segment.rto = kcp.rx_rto
segment.resendts = current segment.rto
} else if segment.fastack >= resent { // fast retransmit
needsend = true
segment.fastack = 0
segment.rto = kcp.rx_rto
segment.resendts = current segment.rto
change
fastRetransSegs
} else if segment.fastack > 0 && newSegsCount == 0 { // early retransmit
needsend = true
segment.fastack = 0
segment.rto = kcp.rx_rto
segment.resendts = current segment.rto
change
earlyRetransSegs
} else if _itimediff(current, segment.resendts) >= 0 { // RTO
needsend = true
if kcp.nodelay == 0 {
segment.rto = kcp.rx_rto
} else {
segment.rto = kcp.rx_rto / 2
}
segment.fastack = 0
segment.resendts = current segment.rto
lostSegs
}
if needsend {
current = currentMs()
segment.xmit
segment.ts = current
segment.wnd = seg.wnd
segment.una = seg.una
need := IKCP_OVERHEAD len(segment.data)
makeSpace(need)
ptr = segment.encode(ptr)
copy(ptr, segment.data)
ptr = ptr[len(segment.data):]
if segment.xmit >= kcp.dead_link {
kcp.state = 0xFFFFFFFF
}
}
// get the nearest rto
if rto := _itimediff(segment.resendts, current); rto > 0 && rto < minrto {
minrto = rto
}
}
// flash remain segments
flushBuffer()
// counter updates
sum := lostSegs
if lostSegs > 0 {
atomic.AddUint64(&DefaultSnmp.LostSegs, lostSegs)
}
if fastRetransSegs > 0 {
atomic.AddUint64(&DefaultSnmp.FastRetransSegs, fastRetransSegs)
sum = fastRetransSegs
}
if earlyRetransSegs > 0 {
atomic.AddUint64(&DefaultSnmp.EarlyRetransSegs, earlyRetransSegs)
sum = earlyRetransSegs
}
if sum > 0 {
atomic.AddUint64(&DefaultSnmp.RetransSegs, sum)
}
// cwnd update
if kcp.nocwnd == 0 {
// update ssthresh
// rate halving, https://tools.ietf.org/html/rfc6937
if change > 0 {
inflight := kcp.snd_nxt - kcp.snd_una
kcp.ssthresh = inflight / 2
if kcp.ssthresh < IKCP_THRESH_MIN {
kcp.ssthresh = IKCP_THRESH_MIN
}
kcp.cwnd = kcp.ssthresh resent
kcp.incr = kcp.cwnd * kcp.mss
}
// congestion control, https://tools.ietf.org/html/rfc5681
if lostSegs > 0 {
kcp.ssthresh = cwnd / 2
if kcp.ssthresh < IKCP_THRESH_MIN {
kcp.ssthresh = IKCP_THRESH_MIN
}
kcp.cwnd = 1
kcp.incr = kcp.mss
}
if kcp.cwnd < 1 {
kcp.cwnd = 1
kcp.incr = kcp.mss
}
}
return uint32(minrto)
}
// (deprecated)
//
// Update updates state (call it repeatedly, every 10ms-100ms), or you can ask
// ikcp_check when to call it again (without ikcp_input/_send calling).
// 'current' - current timestamp in millisec.
func (kcp *KCP) Update() {
var slap int32
current := currentMs()
if kcp.updated == 0 {
kcp.updated = 1
kcp.ts_flush = current
}
slap = _itimediff(current, kcp.ts_flush)
if slap >= 10000 || slap < -10000 {
kcp.ts_flush = current
slap = 0
}
if slap >= 0 {
kcp.ts_flush = kcp.interval
if _itimediff(current, kcp.ts_flush) >= 0 {
kcp.ts_flush = current kcp.interval
}
kcp.flush(false)
}
}
// (deprecated)
//
// Check determines when should you invoke ikcp_update:
// returns when you should invoke ikcp_update in millisec, if there
// is no ikcp_input/_send calling. you can call ikcp_update in that
// time, instead of call update repeatly.
// Important to reduce unnacessary ikcp_update invoking. use it to
// schedule ikcp_update (eg. implementing an epoll-like mechanism,
// or optimize ikcp_update when handling massive kcp connections)
func (kcp *KCP) Check() uint32 {
current := currentMs()
ts_flush := kcp.ts_flush
tm_flush := int32(0x7fffffff)
tm_packet := int32(0x7fffffff)
minimal := uint32(0)
if kcp.updated == 0 {
return current
}
if _itimediff(current, ts_flush) >= 10000 ||
_itimediff(current, ts_flush) < -10000 {
ts_flush = current
}
if _itimediff(current, ts_flush) >= 0 {
return current
}
tm_flush = _itimediff(ts_flush, current)
for k := range kcp.snd_buf {
seg := &kcp.snd_buf[k]
diff := _itimediff(seg.resendts, current)
if diff <= 0 {
return current
}
if diff < tm_packet {
tm_packet = diff
}
}
minimal = uint32(tm_packet)
if tm_packet >= tm_flush {
minimal = uint32(tm_flush)
}
if minimal >= kcp.interval {
minimal = kcp.interval
}
return current minimal
}
// SetMtu changes MTU size, default is 1400
func (kcp *KCP) SetMtu(mtu int) int {
if mtu < 50 || mtu < IKCP_OVERHEAD {
return -1
}