Skip to content

Gradual Guidance Learning with Middle Feature for Weakly Supervised Object Localization

Notifications You must be signed in to change notification settings

chuangchuangtan/G2M

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

G2M

Gradual Guidance Learning with Middle Feature for Weakly Supervised Object Localization

=======

Prerequisites

  • pytorch 1.8.0
  • opencv-contrib-python 4.5.2.54
  • opencv-python 4.5.3.56
  • Pillow 8.2.0

Test

Use the test script to generate attention maps of LayerCAM, SGL, DGL on official pytorch VGG model

python test_loc.py conv5_1

Results on caffe VGG model using layercam_loc.

Rssults on different layers with 0.15 threshold.

Layers Method Top1 loc Top5 loc GT-Known loc
conv5_3 Layercam 44.19 55.02 59.29
conv5_3 sgl-g1 32.16 39.90 42.80
conv5_2 Layercam 45.83 56.88 61.23
conv5_2 sgl-g1 40.16 50.11 54.01
conv5_1 Layercam 43.69 54.21 58.16
conv5_1 sgl-g1 47.70 59.32 63.87( 5.71)[best]
pool4 Layercam 44.10 54.83 58.99
pool4 sgl-g1 46.81 58.23 62.71
conv4_3 Layercam 37.95 47.67 51.91
conv4_3 sgl-g1 53.91 43.45 57.82
conv4_2 Layercam 42.85 53.54 57.89
conv4_2 sgl-g1 42.64 53.39 58.12
conv4_1 Layercam 42.99 53.57 57.73
conv4_1 sgl-g1 39.08 49.09 53.48

TODO

Release codes about G2M

About

Gradual Guidance Learning with Middle Feature for Weakly Supervised Object Localization

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages