-
Notifications
You must be signed in to change notification settings - Fork 133
/
Copy pathlinear_test.go
612 lines (478 loc) · 17.8 KB
/
linear_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
863
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
package linear
import (
"fmt"
"math/rand"
"os"
"testing"
"github.com/cdipaolo/goml/base"
"github.com/stretchr/testify/assert"
)
var flatX [][]float64
var flatY []float64
var increasingX [][]float64
var increasingY []float64
var threeDLineX [][]float64
var threeDLineY []float64
var normX [][]float64
var normY []float64
var noisyX [][]float64
var noisyY []float64
func init() {
// create the /tmp/.goml/ dir for persistance testing
// if it doesn't already exist!
err := os.MkdirAll("/tmp/.goml", os.ModePerm)
if err != nil {
panic(fmt.Sprintf("You should be able to create the directory for goml model persistance testing.\n\tError returned: %v\n", err.Error()))
}
// the line y=3
flatX = [][]float64{}
flatY = []float64{}
for i := -10; i < 10; i++ {
for j := -10; j < 10; j++ {
for k := -10; k < 10; k++ {
flatX = append(flatX, []float64{float64(i), float64(j), float64(k)})
flatY = append(flatY, 3.0)
}
}
}
// the line y=x
increasingX = [][]float64{}
increasingY = []float64{}
for i := -10; i < 10; i++ {
increasingX = append(increasingX, []float64{float64(i)})
increasingY = append(increasingY, float64(i))
}
threeDLineX = [][]float64{}
threeDLineY = []float64{}
normX = [][]float64{}
normY = []float64{}
// the line z = 10 + (x/10) + (y/5)
for i := -10; i < 10; i++ {
for j := -10; j < 10; j++ {
threeDLineX = append(threeDLineX, []float64{float64(i), float64(j)})
threeDLineY = append(threeDLineY, 10+float64(i)/10+float64(j)/5)
normX = append(normX, []float64{float64(i), float64(j)})
}
}
base.Normalize(normX)
for i := range normX {
normY = append(normY, 10+float64(normX[i][0])/10+float64(normX[i][1])/5)
}
// noisy x has random noise embedded
rand.Seed(42)
noisyX = [][]float64{}
noisyY = []float64{}
for i := 256.0; i < 1024; i += 2 {
noisyX = append(noisyX, []float64{i + (rand.Float64()-0.5)*3})
noisyY = append(noisyY, 0.5*i+rand.NormFloat64()*25)
}
// save the random data to make some nice plots!
base.SaveDataToCSV("/tmp/.goml/noisy_linear.csv", noisyX, noisyY, true)
}
// test y=3
func TestFlatLineShouldPass1(t *testing.T) {
var err error
model := NewLeastSquares(base.BatchGA, .000001, 0, 800, flatX, flatY)
err = model.Learn()
assert.Nil(t, err, "Learning error should be nil")
var guess []float64
for i := -20; i < 20; i += 10 {
for j := -20; j < 20; j += 10 {
for k := -20; k < 20; k += 10 {
guess, err = model.Predict([]float64{float64(i), float64(j), float64(k)})
assert.Len(t, guess, 1, "Length of a LeastSquares model output from the hypothesis should always be a 1 dimensional vector. Never multidimensional.")
assert.InDelta(t, 3, guess[0], 1e-2, "Guess should be really close to 3 (within 1e-2) for y=3")
assert.Nil(t, err, "Prediction error should be nil")
}
}
}
}
// same as above but with StochasticGA
func TestFlatLineShouldPass2(t *testing.T) {
var err error
model := NewLeastSquares(base.StochasticGA, .000001, 0, 800, flatX, flatY)
err = model.Learn()
assert.Nil(t, err, "Learning error should be nil")
var guess []float64
for i := -20; i < 20; i += 10 {
for j := -20; j < 20; j += 10 {
for k := -20; k < 20; k += 10 {
guess, err = model.Predict([]float64{float64(i), float64(j), float64(k)})
assert.Len(t, guess, 1, "Length of a LeastSquares model output from the hypothesis should always be a 1 dimensional vector. Never multidimensional.")
assert.InDelta(t, 3, guess[0], 1e-2, "Guess should be really close to 3 (within 1e-2) for y=3")
assert.Nil(t, err, "Prediction error should be nil")
}
}
}
}
// test y=3 but don't have enough iterations
func TestFlatLineShouldFail1(t *testing.T) {
var err error
model := NewLeastSquares(base.BatchGA, .000001, 0, 1, flatX, flatY)
err = model.Learn()
assert.Nil(t, err, "Learning error should be nil")
var guess []float64
var faliures int
for i := -20; i < 20; i += 10 {
for j := -20; j < 20; j += 10 {
for k := -20; k < 20; k += 10 {
guess, err = model.Predict([]float64{float64(i), float64(j), float64(k)})
assert.Len(t, guess, 1, "Length of a LeastSquares model output from the hypothesis should always be a 1 dimensional vector. Never multidimensional.")
if abs(3.0-guess[0]) > 1e-2 {
faliures++
}
assert.Nil(t, err, "Prediction error should be nil")
}
}
}
assert.True(t, faliures > 40, "There should be more faliures than half of the training set")
}
// same as above but with StochasticGA
func TestFlatLineShouldFail2(t *testing.T) {
var err error
model := NewLeastSquares(base.StochasticGA, .000001, 0, 1, flatX, flatY)
err = model.Learn()
assert.Nil(t, err, "Learning error should be nil")
var guess []float64
var faliures int
for i := -20; i < 20; i += 10 {
for j := -20; j < 20; j += 10 {
for k := -20; k < 20; k += 10 {
guess, err = model.Predict([]float64{float64(i), float64(j), float64(k)})
assert.Len(t, guess, 1, "Length of a LeastSquares model output from the hypothesis should always be a 1 dimensional vector. Never multidimensional.")
if abs(3.0-guess[0]) > 1e-2 {
faliures++
}
assert.Nil(t, err, "Prediction error should be nil")
}
}
}
assert.True(t, faliures > 40, "There should be more faliures than half of the training set")
}
// test y=3 but include an invalid data set
func TestFlatLineShouldFail3(t *testing.T) {
var err error
model := NewLeastSquares(base.BatchGA, 1, 0, 800, [][]float64{}, flatY)
err = model.Learn()
assert.NotNil(t, err, "Learning error should not be nil")
model = NewLeastSquares(base.BatchGA, 1, 0, 800, [][]float64{[]float64{}, []float64{}}, flatY)
err = model.Learn()
assert.NotNil(t, err, "Learning error should not be nil")
model = NewLeastSquares(base.BatchGA, 1, 0, 800, nil, flatY)
err = model.Learn()
assert.NotNil(t, err, "Learning error should not be nil")
}
// same as above but with StochasticGA
func TestFlatLineShouldFail4(t *testing.T) {
var err error
model := NewLeastSquares(base.StochasticGA, 1, 0, 800, [][]float64{}, flatY)
err = model.Learn()
assert.NotNil(t, err, "Learning error should not be nil")
model = NewLeastSquares(base.StochasticGA, 1, 0, 800, [][]float64{[]float64{}, []float64{}}, flatY)
err = model.Learn()
assert.NotNil(t, err, "Learning error should not be nil")
model = NewLeastSquares(base.StochasticGA, 1, 0, 800, nil, flatY)
err = model.Learn()
assert.NotNil(t, err, "Learning error should not be nil")
}
// test y=3 but include an invalid data set
func TestFlatLineShouldFail5(t *testing.T) {
var err error
model := NewLeastSquares(base.BatchGA, 1, 0, 800, flatX, []float64{})
err = model.Learn()
assert.NotNil(t, err, "Learning error should not be nil")
model = NewLeastSquares(base.BatchGA, 1, 0, 800, flatX, nil)
err = model.Learn()
assert.NotNil(t, err, "Learning error should not be nil")
}
// invalid optimization method
func TestFlatLineShouldFail6(t *testing.T) {
var err error
model := NewLeastSquares(base.OptimizationMethod("Not A Method!!!"), 1, 0, 800, flatX, flatY)
err = model.Learn()
assert.NotNil(t, err, "Learning error should not be nil")
}
// test y=x
func TestInclinedLineShouldPass1(t *testing.T) {
var err error
model := NewLeastSquares(base.BatchGA, .0001, 0, 500, increasingX, increasingY)
err = model.Learn()
assert.Nil(t, err, "Learning error should be nil")
var guess []float64
for i := -20; i < 20; i++ {
guess, err = model.Predict([]float64{float64(i)})
assert.Len(t, guess, 1, "Length of a LeastSquares model output from the hypothesis should always be a 1 dimensional vector. Never multidimensional.")
assert.InDelta(t, i, guess[0], 1e-2, "Guess should be really close to input (within 1e-2) for y=x")
assert.Nil(t, err, "Prediction error should be nil")
}
}
// same as above but with StochasticGA
func TestInclinedLineShouldPass2(t *testing.T) {
var err error
model := NewLeastSquares(base.StochasticGA, .0001, 0, 500, increasingX, increasingY)
err = model.Learn()
assert.Nil(t, err, "Learning error should be nil")
var guess []float64
for i := -20; i < 20; i++ {
guess, err = model.Predict([]float64{float64(i)})
assert.Len(t, guess, 1, "Length of a LeastSquares model output from the hypothesis should always be a 1 dimensional vector. Never multidimensional.")
assert.InDelta(t, i, guess[0], 1e-2, "Guess should be really close to input (within 1e-2) for y=x")
assert.Nil(t, err, "Prediction error should be nil")
}
}
// test y=x but regularization term too large
func TestInclinedLineShouldFail1(t *testing.T) {
var err error
model := NewLeastSquares(base.BatchGA, .0001, 1e3, 500, increasingX, increasingY)
err = model.Learn()
assert.Nil(t, err, "Learning error should be nil")
var guess []float64
var faliures int
for i := -20; i < 20; i += 2 {
guess, err = model.Predict([]float64{float64(i)})
assert.Len(t, guess, 1, "Length of a LeastSquares model output from the hypothesis should always be a 1 dimensional vector. Never multidimensional.")
if abs(float64(i)-guess[0]) > 1e-2 {
faliures++
}
assert.Nil(t, err, "Prediction error should be nil")
}
assert.True(t, faliures > 15, "There should be more faliures than half of the training set")
}
// same as above but with StochasticGA
func TestInclinedLineShouldFail2(t *testing.T) {
var err error
model := NewLeastSquares(base.StochasticGA, 1e-4, 1e3, 300, increasingX, increasingY)
err = model.Learn()
assert.Nil(t, err, "Learning error should be nil")
var guess []float64
var faliures int
for i := -20; i < 20; i += 2 {
guess, err = model.Predict([]float64{float64(i)})
assert.Len(t, guess, 1, "Length of a LeastSquares model output from the hypothesis should always be a 1 dimensional vector. Never multidimensional.")
if abs(float64(i)-guess[0]) > 1e-2 {
faliures++
}
assert.Nil(t, err, "Prediction error should be nil")
}
assert.True(t, faliures > 15, "There should be more faliures than half of the training set")
}
// test z = 10 + (x/10) + (y/5)
func TestThreeDimensionalLineShouldPass1(t *testing.T) {
var err error
model := NewLeastSquares(base.BatchGA, .0001, 0, 1000, threeDLineX, threeDLineY)
err = model.Learn()
assert.Nil(t, err, "Learning error should be nil")
var guess []float64
for i := 0; i < 10; i++ {
for j := 0; j < 10; j++ {
guess, err = model.Predict([]float64{float64(i), float64(j)})
assert.Len(t, guess, 1, "Length of a LeastSquares model output from the hypothesis should always be a 1 dimensional vector. Never multidimensional.")
assert.InDelta(t, 10.0+float64(i)/10+float64(j)/5, guess[0], 1e-2, "Guess should be really close to i+x (within 1e-2) for line z=10 + (x+y)/10")
assert.Nil(t, err, "Prediction error should be nil")
}
}
}
// same as above but with StochasticGA
func TestThreeDimensionalLineShouldPass2(t *testing.T) {
var err error
model := NewLeastSquares(base.StochasticGA, .0001, 0, 1000, threeDLineX, threeDLineY)
err = model.Learn()
assert.Nil(t, err, "Learning error should be nil")
var guess []float64
for i := 0; i < 10; i++ {
for j := 0; j < 10; j++ {
guess, err = model.Predict([]float64{float64(i), float64(j)})
assert.Len(t, guess, 1, "Length of a LeastSquares model output from the hypothesis should always be a 1 dimensional vector. Never multidimensional.")
assert.InDelta(t, 10.0+float64(i)/10+float64(j)/5, guess[0], 1e-2, "Guess should be really close to i+x (within 1e-2) for line z=10 + (x+y)/10")
assert.Nil(t, err, "Prediction error should be nil")
}
}
}
//* Test Online Learning through channels *//
func TestOnlineLinearOneDXShouldPass1(t *testing.T) {
// create the channel of data and errors
stream := make(chan base.Datapoint, 100)
errors := make(chan error)
model := NewLeastSquares(base.StochasticGA, .0001, 0, 0, nil, nil, 1)
go model.OnlineLearn(errors, stream, func(theta [][]float64) {})
// start passing data to our datastream
//
// we could have data already in our channel
// when we instantiated the Perceptron, though
for iter := 0; iter < 500; iter++ {
for i := -40.0; i < 40; i += 0.15 {
stream <- base.Datapoint{
X: []float64{i},
Y: []float64{i/10 + 20},
}
}
}
// close the dataset
close(stream)
err, more := <-errors
assert.Nil(t, err, "Learning error should be nil")
assert.False(t, more, "There should be no errors returned")
// test a larger dataset now
iter := 0
for i := -100.0; i < 100; i += 0.347 {
guess, err := model.Predict([]float64{i})
assert.Nil(t, err, "Prediction error should be nil")
assert.Len(t, guess, 1, "Guess should have length 1")
assert.InDelta(t, i/10+20, guess[0], 1e-2, "Guess should be close to i/10 + 20 for i=%v", i)
iter++
}
fmt.Printf("Iter: %v\n", iter)
}
func TestOnlineLinearOneDXShouldFail1(t *testing.T) {
// create the channel of data and errors
stream := make(chan base.Datapoint, 1000)
errors := make(chan error)
model := NewLeastSquares(base.StochasticGA, .0001, 0, 0, nil, nil, 1)
go model.OnlineLearn(errors, stream, func(theta [][]float64) {})
// give invalid data when it should be -1
for i := -500.0; abs(i) > 1; i *= -0.90 {
stream <- base.Datapoint{
X: []float64{i},
Y: []float64{i/10 + 20, 10, 11},
}
}
// close the dataset
close(stream)
count := 0
for {
_, more := <-errors
count++
if !more {
assert.True(t, count > 1, "Learning error should not be nil")
break
}
}
}
func TestOnlineLinearOneDXShouldFail2(t *testing.T) {
// create the channel of data and errors
stream := make(chan base.Datapoint, 1000)
errors := make(chan error)
model := NewLeastSquares(base.StochasticGA, .0001, 0, 0, nil, nil, 1)
go model.OnlineLearn(errors, stream, func(theta [][]float64) {})
// give invalid data when it should be -1
for i := -500.0; abs(i) > 1; i *= -0.90 {
stream <- base.Datapoint{
X: []float64{i, 0, 13},
Y: []float64{i/10 + 20},
}
}
// close the dataset
close(stream)
count := 0
for {
_, more := <-errors
count++
if !more {
assert.True(t, count > 1, "Learning error should not be nil")
break
}
}
}
func TestOnlineLinearOneDXShouldFail3(t *testing.T) {
// create the channel of errors
errors := make(chan error)
model := NewLeastSquares(base.StochasticGA, .0001, 0, 0, nil, nil, 1)
go model.OnlineLearn(errors, nil, func(theta [][]float64) {})
err := <-errors
assert.NotNil(t, err, "Learning error should not be nil")
}
func TestOnlineLinearFourDXShouldPass1(t *testing.T) {
// create the channel of data and errors
stream := make(chan base.Datapoint, 100)
errors := make(chan error)
var updates int
model := NewLeastSquares(base.StochasticGA, 1e-5, 0, 0, nil, nil, 4)
go model.OnlineLearn(errors, stream, func(theta [][]float64) {
updates++
})
go func() {
for iterations := 0; iterations < 25; iterations++ {
for i := -200.0; abs(i) > 1; i *= -0.75 {
for j := -200.0; abs(j) > 1; j *= -0.75 {
for k := -200.0; abs(k) > 1; k *= -0.75 {
for l := -200.0; abs(l) > 1; l *= -0.75 {
stream <- base.Datapoint{
X: []float64{i, j, k, l},
Y: []float64{i/2 + 2*k - 4*j + 2*l + 3},
}
}
}
}
}
}
// close the dataset
close(stream)
}()
count := 0
for {
err, more := <-errors
assert.Nil(t, err, "Learning error should be nil")
count++
if !more {
// account (pun intended) for the ++ on every iteration
//
// in other words, this should only iterate once, and
// more should be false in that case
assert.Equal(t, 0, count-1, "There should be no errors returned")
break
}
}
assert.True(t, updates > 100, "There should be more than 100 updates of theta")
for i := -200.0; i < 200; i += 100 {
for j := -200.0; j < 200; j += 100 {
for k := -200.0; k < 200; k += 100 {
for l := -200.0; l < 200; l += 100 {
guess, err := model.Predict([]float64{i, j, k, l})
assert.Nil(t, err, "Prediction error should be nil")
assert.Len(t, guess, 1, "Guess should have length 1")
assert.InDelta(t, i/2+2*k-4*j+2*l+3, guess[0], 1e-2, "Guess should be close to i/2+2*k-4*j+2*l+3")
}
}
}
}
}
//* Test Persistance To File *//
// test persisting y=x to file
func TestPersistLeastSquaresShouldPass1(t *testing.T) {
var err error
model := NewLeastSquares(base.BatchGA, 1e-9, 0, 75, noisyX, noisyY)
err = model.Learn()
assert.Nil(t, err, "Learning error should be nil")
var guess []float64
for i := 400.0; i < 600; i++ {
guess, err = model.Predict([]float64{i})
assert.Len(t, guess, 1, "Length of a LeastSquares model output from the hypothesis should always be a 1 dimensional vector. Never multidimensional.")
assert.InDelta(t, i*0.5, guess[0], 5, "Guess*2 should be close to input for y=0.5*x")
assert.Nil(t, err, "Prediction error should be nil")
}
// not that we know it works, try persisting to file,
// then resetting the parameter vector theta, then
// restoring it and testing that predictions are correct
// again.
err = model.PersistToFile("/tmp/.goml/LeastSquares.json")
assert.Nil(t, err, "Persistance error should be nil")
model.Parameters = make([]float64, len(model.Parameters))
// make sure it WONT work now that we reset theta
//
// the result of Theta transpose * X should always
// be 0 because theta is the zero vector right now.
for i := 400.0; i < 600; i++ {
guess, err = model.Predict([]float64{i})
assert.Len(t, guess, 1, "Length of a LeastSquares model output from the hypothesis should always be a 1 dimensional vector. Never multidimensional.")
assert.Equal(t, 0.0, guess[0], "Guess should be 0 when theta is the zero vector")
assert.Nil(t, err, "Prediction error should be nil")
}
err = model.RestoreFromFile("/tmp/.goml/LeastSquares.json")
assert.Nil(t, err, "Persistance error should be nil")
for i := 400.0; i < 600; i++ {
guess, err = model.Predict([]float64{i})
assert.Len(t, guess, 1, "Length of a LeastSquares model output from the hypothesis should always be a 1 dimensional vector. Never multidimensional.")
assert.InDelta(t, i*0.5, guess[0], 5, "Guess*2 should be close to input for y=0.5*x")
assert.Nil(t, err, "Prediction error should be nil")
}
}