Skip to content

Latest commit

 

History

History
907 lines (727 loc) · 32.8 KB

README.md

File metadata and controls

907 lines (727 loc) · 32.8 KB

pypipe

$ echo "pypipe" | ppp "line[::2]"
ppp

pypipe is a Python command-line tool for pipeline processing.

Demo

Demo

Quick links

Installation

pypipe is a single Python file and uses only the standard library. You can use it by placing pypipe.py in a directory included in your PATH (e.g., ~/.local/bin). If execute permission is not already present, please add it.

chmod  x pypipe.py

To make it easier to type, it's recommended to create a symbolic link.

ln -s pypipe.py ppp

Note

pypipe requires Python 3.6 or later.

pypipe can also be installed in the standard way for Python packages, using pip or any compatible tool such as pipx.

pipx install pypipe-ppp

It also supports running directly with pipx without installation.

pipx run pypipe-ppp <args>

You can also use it with Wasmer:

alias ppp="wasmer run bugen/pypipe -- "

Basic usage and Examples

| ppp line

Processing line-by-line. You can access the current line as line or l, and the current line number as i.

$ cat staff.txt |ppp 'i, line.upper()'
1       NAME    WEIGHT  BIRTH   AGE     SPECIES CLASS
2       SIMBA   250     1994-06-15      29      LION    MAMMAL
3       DUMBO   4000    1941-10-23      81      ELEPHANT        MAMMAL
4       GEORGE  20      1939-01-01      84      MONKEY  MAMMAL
5       POOH    1       1921-08-21      102     TEDDY BEAR      ARTIFACT
6       BOB     0       1999-05-01      24      SPONGE  DEMOSPONGE

Using the -j, --json option allows you to decode each line as JSON. The decoded result can be obtained as dic.

$ cat staff.jsonlines.txt |ppp -j 'dic["Name"]'
Simba
Dumbo
George
Pooh
Bob

| ppp rec

Split each line by TAB. You can get the list including splitted strings as rec or r and the record number as i..

cat staff.txt |ppp rec 'r[:3]'
Name    Weight  Birth
Simba   250     1994-06-15
Dumbo   4000    1941-10-23
George  20      1939-01-01
Pooh    1       1921-08-21
Bob     0       1999-05-01

Using the -l LENGTH, --length LENGTH option allows you to get the values of each field as f1, f2, f3, ....

$ tail -n  2 staff.txt |ppp rec -l5 'f"{f1} is {f4} years old"'
Simba is 29 years old
Dumbo is 81 years old
George is 84 years old
Pooh is 102 years old
Bob is 24 years old

Tip

You can now use field variables (f1, f2, f3, ...) without specifying the --length option.

$ cat staff.txt | ppp rec f1,f2,f3

Using field variables can make typing easier, but you have to know the number of fields in advance. Omitting the --length option makes it more convenient to use, but if you omit it, performance will be degraded. In tests, processing data with about 60,000 records and 23 items took 0.45 seconds when specifying the --length option, whereas omitting the --length option took about 0.75 seconds. To maintain performance, either use the --length option or retrieve fields from rec using indices like rec[0], rec[1], rec[2], ... without using field variables.

When using the -H, --header option, it treats the first line as a header line and skips it. The header values can be obtained from a list named header, and you can access the values of each field using the format dic["FIELD_NAME"].

$ cat staff.txt |ppp rec -H 'rec[0], dic["Birth"]'
Simba   1994-06-15
Dumbo   1941-10-23
George  1939-01-01
Pooh    1921-08-21
Bob     1999-05-01

By using the --type FIELD_TYPES, --field-type FIELD_TYPES, you can specify the type of each field, allowing you to convert values from 'str' to the specified type.

$ echo 'Hello	100	10.2	True	{"id":100,"title":"sample"}'|ppp rec -l5 --type 2:i,3:f,4:b,5:j "type(f1),type(f2),type(f3),type(f4),type(f5)"
<class 'str'>   <class 'int'>   <class 'float'> <class 'bool'>  <class 'dict'>

Tip

When there is a header row in the data, using --type, --field-type often results in errors when attempting to convert the header row's item names to the specified types. In such cases, you can avoid errors by using the -H, --header option to skip the header row.

Note

pypipe has added support for automatic type conversion.

You can change the delimiter by using the -d DELIMITER, --delimiter DELIMITER option.

$ cat staff.csv |ppp rec -d , -l6  f1
Name
Simba
Dumbo
George
Pooh
Bob

Also supports regular expression delimiters.

$ echo 'AAA      BBB CCC    DDD' | ppp rec -d '\s ' rec[2]
CCC

Tip

-S, --spaces option has the same meaning as -d '\s '.

You can change the output delimiter by using the -D DELIMITER, --output-delimiter DELIMITER option.

$ cat staff.txt |ppp rec -D ,
Name,Weight,Birth,Age,Species,Class
Simba,250,1994-06-15,29,Lion,Mammal
Dumbo,4000,1941-10-23,81,Elephant,Mammal
George,20,1939-01-01,84,Monkey,Mammal
Pooh,1,1921-08-21,102,Teddy bear,Artifact
Bob,0,1999-05-01,24,Sponge,Demosponge

When using the -m, --regex-match option, rec is generated through regular expression matching instead of delimiter-based splitting.

$ echo 'Height: 200px, Width: 1000px' | ppp rec -m '\d ' r[1]
1000

| ppp csv

csv is similar to rec, but the difference is that while rec simply splits the line using the specified DELIMITER like this, 'line.split(DELIMITER))', csv uses the csv library for parsing. Furthermore, rec is tab-separated by default, whereas csv is comma-separated.

You can specify options to pass to csv.reader and csv.writer using the -O NAME=VALUE, --csv-opt NAME=VALUE option.

$ cat staff.csv |ppp csv -O 'quoting=csv.QUOTE_ALL'
"Name","Weight","Birth","Age","Species","Class"
"Simba","250","1994-06-15","29","Lion","Mammal"
"Dumbo","4000","1941-10-23","81","Elephant","Mammal"
"George","20","1939-01-01","84","Monkey","Mammal"
"Pooh","1","1921-08-21","102","Teddy bear","Artifact"
"Bob","0","1999-05-01","24","Sponge","Demosponge"

| ppp text

In ppp text, the entire standard input is read as a single piece of text. You can access the read text as text.

$ cat staff.txt | ppp text 'len(text)'
231

For example, ppp text is particularly useful when working with an indented JSON file. Using the -j, --json option allows you to decode the text into JSON. The decoded data can be obtained as a dic.

$ cat staff.json |ppp text -j 'dic["data"][0]'
{'Name': 'Simba', 'Weight': 250, 'Birth': '1994-06-15', 'Age': 29, 'Species': 'Lion', 'Class': 'Mammal'}

Tip

You can also use -j, --json option in line and file.

| ppp file

In ppp file, it receives a list of file paths from standard input. It then opens each received file path, reads the contents of the file into text, and repeats this process for each received file path in a loop. The received paths can be obtained as path.

$ ls staff.txt staff.csv staff.json staff.xml |ppp file 'path, len(text)'
staff.csv       231
staff.json      1046
staff.txt       231
staff.xml       1042

For example, ppp file is useful, especially when processing a large number of JSON files.

find . -name '*.json'| ppp file --json ...

| ppp custom -N NAME

You can easily create custom commands using pypipe. First, you define custom commands. The definition file is, by default, located at ~/.config/pypipe/pypipe_custom.py. You can change the path of this file using the PYPIPE_CUSTOM environment variable.

The following is an example of defining custom commands xpath and sum.

~/.config/pypipe/pypipe_custom.py

TEMPLATE_XPATH = r"""
from lxml import etree
{imp}

def output(e):
    if isinstance(e, etree._Element):
        print(etree.tostring(e).decode().rstrip())
    else:
        _print(e)

{pre}

tree = etree.parse(sys.stdin)
for e in tree.xpath('{path}'):
{loop_head}
{loop_filter}
{main}

{post}
"""

TEMPLATE_SUM = r"""
import re
import sys
{imp}

ptn = re.compile(r'{pattern}')
s = 0

def add_or_print(*args):
    global s
    rec = args[0]
    if len(args) == 2:
        if isinstance(args[1], int):
            i = args[1]
            if len(rec) >= i:
                s  = rec[i-1]
        else:
            print(args[1])
    else:
        print(*args[1:])


for line in sys.stdin:
    line = line.rstrip('\r\n')
    rec = [{type}(e) for e in ptn.findall(line)]
    if not rec:
        continue
{loop_head}
{loop_filter}
{main}

print(s)
"""

custom_command = {
    "xpath": {
        "template": TEMPLATE_XPATH,
        "code_indent": 1,
        "default_code": "e",
        "wrapper": 'output({})',
        "options": {
            "path": {"default": '/'}
        }
    },
    "sum": {
        "template": TEMPLATE_SUM,
        "code_indent": 1,
        "default_code": "1",
        "wrapper": 'add_or_print(rec, {})',
        "options": {
            "pattern": {"default": r'\d '},
            "type": {"default": 'int'}
        }
    },
}

You can use them as follows:

$ cat staff.xml |ppp custom -N xpath -O path='./Animal/Age'
<Age>29</Age>
<Age>81</Age>
<Age>84</Age>
<Age>102</Age>
<Age>24</Age>
$ seq 10000| ppp c -Nsum -f 'rec[0] % 3 == 0'
16668333

Automatic Import and Explicit Import

pypipe attempts to automatically import the necessary modules. While explicit import is likely not required in most cases, it is also possible to explicitly import the necessary modules using the -i IMPORT, --import IMPORT option. The following examples all work in the same way:

$ seq 10 | ppp 'math.sqrt(int(line))'
$ seq 10 | ppp -i math 'math.sqrt(int(line))'
$ seq 10 | ppp -i 'from math import sqrt' 'sqrt(int(line))'

Using the explicit import format from <module> import <function> can be useful in cases where you need to use the <function> multiple times within the code.

Note

See also here about -i IMPORT, --import IMPORT option.

Automatic type conversion -t, --convert

When using the -t, --convert option, it automatically converts the input types.

$ echo 'Hello	100	10.2	True	None	(1,2,3)	[1,2,3]	{1,2,3}	{"id":100,"title":"sample"}'|ppp rec --view -t "[(v, type(v)) for v in rec]"
[Record 1]
1  ('Hello', <class 'str'>)
2  (100, <class 'int'>)
3  (10.2, <class 'float'>)
4  (True, <class 'bool'>)
5  (None, <class 'NoneType'>)
6  ((1, 2, 3), <class 'tuple'>)
7  ([1, 2, 3], <class 'list'>)
8  ({1, 2, 3}, <class 'set'>)
9  ({'id': 100, 'title': 'sample'}, <class 'dict'>)

In the following example, there is no longer a need to explicitly convert to a numeric type like int(rec[1]) > 100; it now works with rec[1] > 100.

$ cat staff.txt | ppp rec --convert --header --filter 'rec[1] > 100'
Simba   250     1994-06-15      29      Lion    Mammal
Dumbo   4000    1941-10-23      81      Elephant        Mammal

Tip

The -t, --convert option is available for use with line, rec, csv, text, and file.

Tip

Automatic type conversion supports int, float, bool, None, json (dict, list, bool, null), and eval (tuple, list, set, dict).

Warning

The -t, --convert option is convenient but may lead to a performance degradation when used. It should not be used if performance is crucial.

View mode -v, --view

When using the -v, --view option, the output is pretty printed with colored formatting. Data formats with many items such as CSV, TSV, JSON, and others can be hard to read in their raw format, making the View mode particularly useful when inspecting such data. In View mode, dict, list and tuple are formatted using the standard library's pprint.

Alt text

When you use both the -v, --view option and the -H, --header option together, it displays the values along with the field names.

Alt text

In View mode, dict, list and tuple are formatted using the standard library's pprint.

Alt text

-k COLOR_MODE, --color COLOR_MODE

In View mode, pypipe automatically determines whether to apply colorization. By default, when outputting to a terminal, the output will be in color. However, if you redirect the output to a file or pipe it to another command, it will not be in color. You can change this behavior using the -k COLOR_MODE, --color COLOR_MODE options:

  • Using -k auto or --color auto lets the tool automatically decide whether to apply colorization.
  • Using -k always or --color always forces colorization at all times.
  • Using -k never or --color never disables colorization.

Also, by setting the PYPIPE_VIEW_COLORED environment variable to false, you can disable colors by default. However, if the -k, --color option is specified, it takes precedence.

Output formatting

In pypipe, you have the flexibility to write code to output results in any desired format. For example:

$ echo "Hello" | ppp line -n 'print(line   " World!")'
Hello World!

Please note the presence of the -n option in the command above. If you omit this option, the output will look like this:

$ echo "Hello" | ppp line 'print(line   " World!")'
Hello World!
None

So, what's happening here? When you have questions about pypipe's behavior, a good approach is to inspect the code generated using the -p, --print option.

~$ echo "Hello" | ppp line  'print(line   " World!")' -p
# IMPORT
import sys
from functools import partial

# PRE
_p = partial(print, sep="\t")  # ABBREV
I, S, B, L, D, SET = 0, "", False, [], {}, set()  # ABBREV

def _print(*args, sep='\t'):
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        print(sep.join(str(v) for v in args[0]))
    else:
        print(sep.join(str(v) for v in args))


for i, line in enumerate(sys.stdin, 1):
    line = line.rstrip("\r\n")
    l = line  # ABBREV
    # LOOP HEAD
    # LOOP FILTER
    # MAIN
    _print(print(line   " World!"))

# POST

In this case, running ppp line 'print(line " World!")' -p should reveal a line in the generated code like _print(print(line " World!")). This is due to a unique feature of pypipe called as Code wrapping.

Let's make a slight modification to the command by removing the print function:

$ echo "Hello" | ppp line 'line   " World!"'
Hello World!

Indeed, pypipe is designed to allow the omission of the print function for less typing.

Change the behavior of the _print function

By default, the _print({}) wrapper is used. The _print function is an internally implemented output function in pypipe and has the following implementation:

def _print(*args, sep='\t'):
    if len(args) is 1 and isinstance(args[0], (list, tuple)):
        print(sep.join(str(v) for v in args[0]))
    else:
        print(sep.join(str(v) for v in args))

You can replace the implementation of the _print function using the -F FORMAT, --output-format FORMAT option. pypipe allows you to control the output format by changing the implementation of the _print function.

-Fd, -F default, --output-format=default

Default output format.

Implementation of the _print function: as described above.

Output example:

$ echo '["aaa", "bbb", "ccc"]' | ppp --json -Fd dic
aaa	bbb	ccc

-Fj, -F json, --output-format=json

Converts dict, list, and tuple to JSON format for output. However, when a single string is passed, it will not be enclosed in double quotes (meaning it is not in JSON string format).

Implementation of the _print function:

def _json(v):
    if isinstance(v, (dict, list, tuple)):
        v = json.dumps(v)
    elif not isinstance(v, str):
        v = str(v)
    return v

def _print(*args, sep='\t'):
    print(sep.join(_json(v) for v in args))

Output example:

$ echo '["aaa", "bbb", "ccc"]' | ppp --json -Fj dic
["aaa", "bbb", "ccc"]

-Fn, -F native, --output-format=native

Uses the standard print function for output.

Implementation of the _print function:

_print = partial(print, sep='\t')

Output example:

$ echo '["aaa", "bbb", "ccc"]' | ppp --json -Fn dic
['aaa', 'bbb', 'ccc']

Change the output delimiter -D DELIMITER, --output-delimiter DELIMITER

You can change the output delimiter using the -D DELIMITER, --output-delimiter DELIMITER option. The delimiter does not have to be a single character, you can specify multiple characters 1.

$ cat staff.txt | ppp rec -D ' | '
Name | Weight | Birth | Age | Species | Class
Simba | 250 | 1994-06-15 | 29 | Lion | Mammal
Dumbo | 4000 | 1941-10-23 | 81 | Elephant | Mammal
George | 20 | 1939-01-01 | 84 | Monkey | Mammal
Pooh | 1 | 1921-08-21 | 102 | Teddy bear | Artifact
Bob | 0 | 1999-05-01 | 24 | Sponge | Demosponge

-L, --linebreak

The -L, --linebreak option has the same meaning as -D '\n', --output-delimiter '\n'. It is useful when connecting pypipe's output to pypipe. Instead of writing a for loop in pypipe, you can use -L, --linebreak to connect to the next pypipe, enabling you to achieve similar processing as nested for loops.

Using -L to output with line breaks:

$ cat staff.json|ppp text -j '*dic["data"]' -Fj -L
{"Name": "Simba", "Weight": 250, "Birth": "1994-06-15", "Age": 29, "Species": "Lion", "Class": "Mammal"}
{"Name": "Dumbo", "Weight": 4000, "Birth": "1941-10-23", "Age": 81, "Species": "Elephant", "Class": "Mammal"}
{"Name": "George", "Weight": 20, "Birth": "1939-01-01", "Age": 84, "Species": "Monkey", "Class": "Mammal"}
{"Name": "Pooh", "Weight": 1, "Birth": "1921-08-21", "Age": 102, "Species": "Teddy bear", "Class": "Artifact"}
{"Name": "Bob", "Weight": 0, "Birth": "1999-05-01", "Age": 24, "Species": "Sponge", "Class": "Demosponge"}

To further process this output:

$ cat staff.json | ppp text -j '*dic["data"]' -Fj -L | ppp -j 'dic["Weight"]' | ppp c -N sum
4271

This can also be written as follows. Please use your preferred method:

$ cat staff.json|ppp text -j '
> for r in dic["data"]:
>     I  = r["Weight"]
> ' -n -a 'print(I)'
4271

Counter -c, --counter

Using the -c, --counter option allows for easy data aggregation. When you specify the -c, --counter option, it creates an instance of collections.Counter, which can be accessed as either counter or c. The -c, --counter option is available for use in all commands.

An example of aggregating data by the 'Gender' and 'Hobby' fields.

$ cat people.csv |ppp csv -H --counter 'dic["Gender"], dic["Hobby"]'| head -n10
Female  Cooking 4
Male    Hiking  3
Female  Reading 3
Male    Gardening       3
Female  Traveling       3
Male    Playing Music   3
Female  Dancing 3
Female  Hiking  3
Female  Painting        2
Male    Photography     2

This is an example to aggregate data based on whether female individuals are 30 years or older.

cat people.csv |ppp csv -H -c -f 'dic["Gender"] == "Female"' 'int(dic["Age"]) >= 30'
False   16
True    10

When using the -c, --counter option, it uses counter[{}] = 1 as the wrapper. If you want to count in a different way, you can disable the wrapping by using the -n, --no-wrapping option and add your own counting code.

$ cat population.csv |ppp csv -H -c -n 'counter[dic["State"]]  = int(dic["Population"])'
New York        8398748
Texas   7751480
California      7327731
Illinois        2705994
Arizona 1680992
Pennsylvania    1584138
Florida 903889
Ohio    892533
Indiana 876862
North Carolina  792862
Washington      753675
Michigan        673104

Information about Code wrapping.

pypipe is a code generator.

pypipe is a command-line tool for pipeline processing, but it can also be thought of as a code generator. It generates code internally using the given arguments and then executes the generated code using the exec function. Therefore, instead of executing the generated code, you have the option to print it to the standard output or save it to a file.

Print generated code. -p, --print

To check the generated code, you can use the -p, --print option.

ppp file -m rb -i hashlib -b 'total = 0' -b '_p("PATH", "SIZE", "MD5")' -e 'size = len(text)' -f 'path.stem == "staff"' 'total  = size' 'path, size, hashlib.md5(text).hexdigest()' -a 'print(f"Total size: {total}")' -p

The generated code is output as follows.

# IMPORT
import sys
from functools import partial
import gzip
from pathlib import Path
import hashlib

def _open(path):
    if path.suffix == '.gz':
        return gzip.open(path, 'rb')
    else:
        return open(path, 'rb')

# PRE
_p = partial(print, sep="\t")  # ABBREV
I, S, B, L, D, SET = 0, "", False, [], {}, set()  # ABBREV

def _print(*args, sep='\t'):
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        print(sep.join(str(v) for v in args[0]))
    else:
        print(sep.join(str(v) for v in args))

total = 0
_p("PATH", "SIZE", "MD5")

for i, line in enumerate(sys.stdin, 1):
    path = Path(line.rstrip('\r\n'))
    with _open(path) as file:
        text = file.read()
        # LOOP HEAD
        size = len(text)
        # LOOP FILTER
        if not (path.stem == "staff"): continue
        # MAIN
        total  = size
        _print(path, size, hashlib.md5(text).hexdigest())

# POST
print(f"Total size: {total}", file=sys.stderr)

Check that there are no issues with the generated code and execute it.

$ find docs -type f |ppp file -m rb -i hashlib -b 'total = 0' -b '_p("PATH", "SIZE", "MD5")' -e 'size = len(text)' -f 'path.stem == "staff"' 'total  = size' 'path, size, hashlib.md5(text).hexdigest()' -a 'print(f"Total size: {total}")'
PATH    SIZE    MD5
docs/staff.json 1046    3f81986424eea2648bcabec324f8e959
docs/staff.txt  231     a0757fb3838ed1235b21f96e1953445c
docs/staff.xml  1042    7d36d493c1dd7863db3426f242b667f6
docs/staff.csv  231     6cba6414c49b8762d6a49e2d9a62e563
Total size: 2550

Save generated code to a file. -o PATH, --output PATH

For writing more complex code, it's a good practice to create a template code with pypipe and edit the templated code manually. Here's the process you can follow:

  1. Create a template code with pypipe and save it to a file, for example:
    ppp line --output /tmp/pipe.py ...
  2. Edit the code in /tmp/pipe.py to suit your needs.
  3. Execute the modified code by piping input to it, for example:
    cat sample.txt | /tmp/pipe.py

Main codes

The main code is specified as positional arguments. You can specify multiple main codes. The placement of the main code varies depending on the command. In commands like line, rec, csv, and file, the main code is added within the loop processing with proper indentation. However, in the text command, where there is no loop processing, the main code is added without indentation. In the custom command, the main code is added according to the definitions provided in the pypipe_custom.py file.

$ ppp text -pqrn "for word in text.split():"  "    print(word)"
import sys
from functools import partial

def _print(*args, sep='\t'):
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        print(sep.join(str(v) for v in args[0]))
    else:
        print(sep.join(str(v) for v in args))

text = sys.stdin.read()
for word in text.split():  # <- HERE
    print(word)            # <- HERE

You can also write it with line breaks in the terminal as follows:

$ ppp text -pqrn '
> for word in text.split():
>     print(word)
> '

Default main code

If no main code is specified in the arguments, pypipe adds a predefined default code. For example, the default code in Line mode is 'line'.

ppp -pqr
import sys
from functools import partial


def _print(*args, sep='\t'):
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        print(sep.join(str(v) for v in args[0]))
    else:
        print(sep.join(str(v) for v in args))


for i, line in enumerate(sys.stdin, 1):
    line = line.rstrip("\r\n")
    _print(line)   # Default code with code wrappping.

Code wrapping

By default, pypipe wraps the last code specified in the arguments with a predefined wrapper. For example, in ppp line, it uses '_print({})' as the wrapper. However, if the -c, --counter option is specified, it uses 'counter[{}] = 1' as the wrapper instead.

$ ppp line 'year = int(line)' year -pqr
import sys
from functools import partial


def _print(*args, sep='\t'):
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        print(sep.join(str(v) for v in args[0]))
    else:
        print(sep.join(str(v) for v in args))


for i, line in enumerate(sys.stdin, 1):
    line = line.rstrip("\r\n")
    year = int(line)
    _print(year)  # Wrapping

Disable code wrapping. -n, --no-wrapping

If you want to disable the wrapping of the last code specified in the arguments by a predefined wrapper, you can use the -n, --no-wrapping option.

$ ppp line -n 'I = max(len(line), I)' -a 'print(I)' -pq
import sys
from functools import partial

_p = partial(print, sep="\t")  # ABBREV
I, S, B, L, D, SET = 0, "", False, [], {}, set()  # ABBREV

def _print(*args, sep='\t'):
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        print(sep.join(str(v) for v in args[0]))
    else:
        print(sep.join(str(v) for v in args))


for i, line in enumerate(sys.stdin, 1):
    line = line.rstrip("\r\n")
    l = line  # ABBREV
    I = max(len(line), I)   # No wrapping

print(I)

Pre and Post codes. -b CODE, --pre CODE, -a CODE, --post CODE

The code specified with -b CODE, --pre CODE will be added before the loop processing or the main code. This can be useful for declaring variables or performing any necessary setup before entering a loop or executing the main code. The code specified with -a CODE, --post CODE will be added after the loop processing or the main code. This can be useful for displaying aggregated results or performing any additional actions after the loop or main code execution.

$ ppp rec --pqrn -b 'TOTAL = 0' -b 'MAX = 0'  'TOTAL  = int(rec[0])' 'MAX = max(MAX, int(rec[0]))'  -a 'print(f"TOTAL: {TOTAL}")' -a 'print(f"MAX: {MAX}")'
import sys
from functools import partial


def _print(*args, sep='\t'):
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        print(sep.join(str(v) for v in args[0]))
    else:
        print(sep.join(str(v) for v in args))


TOTAL = 0   # PRE
MAX = 0     # PRE

for i, line in enumerate(sys.stdin, 1):
    line = line.rstrip("\r\n")
    rec = line.split('\t')
    TOTAL  = int(rec[0])
    MAX = max(MAX, int(rec[0]))

print(f"TOTAL: {TOTAL}")  # POST
print(f"MAX: {MAX}")      # POST

Inner loop. -e CODE, --loop-head CODE, -f CODE, --filter CODE

In the loop processing of line, rec, csv, and file commands, the code is added in the following positions:

for ... :
    {loop_head}  # Added with the -e CODE, --loop-head CODE option.
    {filter}     # Added with the -f CODE, --filter CODE option.
    {main}       # The main code is added here.

"loop_head" is added using the -e CODE, --loop-head CODE option, while "filter" is added using the -f CODE, --filter CODE option. Please note that the "loop_head" code is added as-is, while the "loop_filter" is wrapped with if not ({}): continue.

$ ppp line -pqrn -e 'line = line.replace("foo", "bar")' -e 'line = line.upper()' -f '"BAR" in line' 'print(line)'
import sys
from functools import partial


def _print(*args, sep='\t'):
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        print(sep.join(str(v) for v in args[0]))
    else:
        print(sep.join(str(v) for v in args))


for i, line in enumerate(sys.stdin, 1):
    line = line.rstrip("\r\n")
    line = line.replace("foo", "bar")  # LOOP_HEAD
    line = line.upper()                # LOOP_HEAD
    if not ("BAR" in line): continue   # FILTER
    print(line)                        # MAIN

Import modules. -i MODULE, --import MODULE

By using the -i MODULE, --import MODULE option, you can import any modules. If the value specified with --import is in the form of a sentence, like import math or from math import sqrt, it will be added as an import statement just as it is. If only the module name is provided, like math, it will automatically be given an import statement, such as import math.

ppp text -i zlib -i 'from base64 import b64encode' 'b64encode(zlib.compress(text.encode()))'

$ ppp text -pqrn -i zlib -i 'from base64 import b64encode' 'print(b64encode(zlib.compress(text.encode())))'
import sys
from functools import partial
import zlib                    # <- HERE
from base64 import b64encode   # <- HERE

def _print(*args, sep='\t'):
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        print(sep.join(str(v) for v in args[0]))
    else:
        print(sep.join(str(v) for v in args))


text = sys.stdin.read()
print(b64encode(zlib.compress(text.encode())))

Usage example.

$ seq 5 |ppp -i math 'line, math.sqrt(int(line))'
1       1.0
2       1.4142135623730951
3       1.7320508075688772
4       2.0
5       2.23606797749979

Pager

Enable/Disable Pager

In pypipe, the pager is automatically enabled if the standard output is a tty. To disable the pager, set the PYPIPE_PAGER_ENABLED environment variable to false. Additionally, you can enable/disable the pager by specifying the --paging or --no-paging options. This takes precedence over the PYPIPE_PAGER_ENABLED setting. However, if the standard output is not a tty, specifying --paging will not enable the pager.

Pager command

The default pager command is less (recommended, tested). You can change the pager command by setting the PYPIPE_PAGER environment variable. If less is specified as the PAGER, pypipe automatically adds the options set in the PYPIPE_LESS_OPTS environment variable. The default value for PYPIPE_LESS_OPTS is -R -F.

Pager for -p, --print

Warning

When interrupting with Ctrl-C while using bat as a pager, a display issue has been identified where the terminal output becomes corrupted (terminal command input is no longer visible). Exiting bat with q avoids this issue.

You can change the Pager used when the -p, --print option is specified to a different Pager than the default. For example, by setting the PYPIPE_PRINT_PAGER environment variable as shown below, you can use bat to display syntax-highlighted code:

export PYPIPE_PRINT_PAGER='bat -l python --file-name=PYPIPE_GENERATED_CODE'

Output example when 'bat' is set as the Pager.

Alt text

Pager for -v, --view

Similarly, by setting the PYPIPE_VIEW_PAGER environment variable, you can change the Pager used when the -v, --view option is specified to a different Pager than the default. Also, if you do not want to pass color control escape sequences to the Pager, you can disable colors by setting the PYPIPE_VIEW_COLORED environment variable to false, thereby avoiding this.

Footnotes

  1. Internally, the character specified using the -D, --output-delimiter option is passed as the sep argument to the _print function. Then, you can specify multiple characters for sep. However, it's important to note that in the csv command, a different output function using csv.writer is used as a wrapper, rather than the _print function. In this case, the character specified using the -D, --output-delimiter option is passed as the delimiter argument to csv.writer, and specifying multiple characters for the delimiter is not possible.