Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Speedup with XGboost classifier runtime error #37

Closed
adendek opened this issue Sep 12, 2016 · 3 comments
Closed

Speedup with XGboost classifier runtime error #37

adendek opened this issue Sep 12, 2016 · 3 comments
Labels

Comments

@adendek
Copy link

adendek commented Sep 12, 2016

I have tried to use speedup.LocukpClassifier with XGboost as a base_estimator but I failed. This may be a bug in LockupClassifier implementation.
I executed following python code:

train_X, test_X, train_Y, test_Y = train_test_split(new_features, target, random_state=42,train_size=0.5 )              

base_classifier = xgb.XGBClassifier(n_estimators=400, learning_rate=0.07 ,scale_pos_weight=ratio_ghost_to_good)
classifier = LookupClassifier(base_estimator=base_classifier, keep_trained_estimator=False)
classifier.fit(train_X, train_Y)

And obtained following error code

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-11-afeadcdc082e> in <module>()
      3 base_classifier = xgb.XGBClassifier(n_estimators=400, learning_rate=0.07 ,scale_pos_weight=ratio_ghost_to_good)
      4 classifier = LookupClassifier(base_estimator=base_classifier, keep_trained_estimator=False)
----> 5 classifier.fit(train_X, train_Y)

/afs/cern.ch/user/a/adendek/.local/lib/python2.7/site-packages/hep_ml/speedup.pyc in fit(self, X, y, sample_weight)
     91         all_lookup_indices = numpy.arange(int(n_parameter_combinations))
     92         all_combinations = self.convert_lookup_index_to_bins(all_lookup_indices)
---> 93         self._lookup_table = trained_estimator.predict_proba(all_combinations)
     94 
     95         if self.keep_trained_estimator:

/afs/cern.ch/user/a/adendek/.local/lib/python2.7/site-packages/xgboost/sklearn.pyc in predict_proba(self, data, output_margin, ntree_limit)
    475         class_probs = self.booster().predict(test_dmatrix,
    476                                              output_margin=output_margin,
--> 477                                              ntree_limit=ntree_limit)
    478         if self.objective == "multi:softprob":
    479             return class_probs

/afs/cern.ch/user/a/adendek/.local/lib/python2.7/site-packages/xgboost/core.pyc in predict(self, data, output_margin, ntree_limit, pred_leaf)
    937             option_mask |= 0x02
    938 
--> 939         self._validate_features(data)
    940 
    941         length = ctypes.c_ulong()

/afs/cern.ch/user/a/adendek/.local/lib/python2.7/site-packages/xgboost/core.pyc in _validate_features(self, data)
   1177 
   1178                 raise ValueError(msg.format(self.feature_names,
-> 1179                                             data.feature_names))
   1180 
   1181     def get_split_value_histogram(self, feature, fmap='', bins=None, as_pandas=True):

ValueError: feature_names mismatch: [u'seed_chi2PerDoF', u'seed_p', u'seed_pt', u'seed_nLHCbIDs', u'seed_nbIT', u'seed_nLayers', u'seed_x', u'seed_y', u'seed_tx', u'seed_ty', u'abs_seed_x', u'abs_seed_y', u'abs_seed_tx', u'abs_seed_ty', u'seed_r', u'pseudo_rapidity'] ['f0', 'f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9', 'f10', 'f11', 'f12', 'f13', 'f14', 'f15']
expected seed_nbIT, abs_seed_y, abs_seed_x, seed_tx, seed_pt, seed_nLayers, seed_x, seed_y, seed_ty, pseudo_rapidity, seed_p, seed_r, abs_seed_tx, abs_seed_ty, seed_nLHCbIDs, seed_chi2PerDoF in input data
training data did not have the following fields: f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f12, f13, f10, f11, f14, f15
@arogozhnikov
Copy link
Owner

@adendek thanks for reporting, I forgot about this scenario

@arogozhnikov
Copy link
Owner

I've fixed this in the develop branch, try it now:

pip uninstall hep_ml
pip install https://github.com/arogozhnikov/hep_ml/archive/develop.zip

@adendek
Copy link
Author

adendek commented Sep 12, 2016

Great! It works!

@adendek adendek closed this as completed Sep 12, 2016
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

2 participants