Skip to content

andsteing/aqt

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AQT : Accurate Quantized Training

AQT is a quantization library designed to allow utilization of low-bit and high-performance numerics of contemporary ML hardware accelerators. AQT supports both research and production1, but focuses on the latter.

Citing AQT

Please use a following bibtex entry:

@software{aqt2022github,
  author = {Lew, Lukasz and Feinberg, Vlad and Agrawal, Shivani and Lee, Jihwan and Malmaud, Jonathan and Wang, Lisa and  Dormiani, Pouya and Pope, Reiner },
  title = {AQT: Accurate Quantized Training)},
  url = {http://github.com/google/aqt},
  year = {2022},
}

Footnotes

  1. The support for research is exemplified by having a state of the art quantization quality on standard models such as ResNet and Transformer. The production aspect is defined as high performance and robust out-of-the-box working results with good defaults.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 91.8%
  • Jupyter Notebook 8.0%
  • Shell 0.2%