-
Notifications
You must be signed in to change notification settings - Fork 213
/
bessel_Knu.c
189 lines (163 loc) · 5.31 KB
/
bessel_Knu.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
/* specfunc/bessel_Knu.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_exp.h>
#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_sf_bessel.h>
#include "error.h"
#include "bessel.h"
#include "bessel_temme.h"
/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
int
gsl_sf_bessel_Knu_scaled_e(const double nu, const double x, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if(x <= 0.0 || nu < 0.0) {
DOMAIN_ERROR(result);
}
else {
gsl_sf_result_e10 result_e10;
int status = gsl_sf_bessel_Knu_scaled_e10_e(nu, x, &result_e10);
int status2 = gsl_sf_result_smash_e(&result_e10, result);
return GSL_ERROR_SELECT_2(status, status2);
}
}
int
gsl_sf_bessel_Knu_scaled_e10_e(const double nu, const double x, gsl_sf_result_e10 * result)
{
/* CHECK_POINTER(result) */
if(x <= 0.0 || nu < 0.0) {
DOMAIN_ERROR_E10(result);
}
else {
int N = (int)(nu 0.5);
double mu = nu - N; /* -1/2 <= mu <= 1/2 */
double K_mu, K_mup1, Kp_mu;
double K_nu, K_nup1, K_num1;
int n, e10 = 0;
if(x < 2.0) {
gsl_sf_bessel_K_scaled_temme(mu, x, &K_mu, &K_mup1, &Kp_mu);
}
else {
gsl_sf_bessel_K_scaled_steed_temme_CF2(mu, x, &K_mu, &K_mup1, &Kp_mu);
}
/* recurse forward to obtain K_num1, K_nu */
K_nu = K_mu;
K_nup1 = K_mup1;
for(n=0; n<N; n ) {
K_num1 = K_nu;
K_nu = K_nup1;
/* rescale the recurrence to avoid overflow */
if (fabs(K_nu) > GSL_SQRT_DBL_MAX) {
double p = floor(log(fabs(K_nu))/M_LN10);
double factor = pow(10.0, p);
K_num1 /= factor;
K_nu /= factor;
e10 = p;
};
K_nup1 = 2.0*(mu n 1)/x * K_nu K_num1;
}
result->val = K_nu;
result->err = 2.0 * GSL_DBL_EPSILON * (N 4.0) * fabs(result->val);
result->e10 = e10;
return GSL_SUCCESS;
}
}
int
gsl_sf_bessel_Knu_e(const double nu, const double x, gsl_sf_result * result)
{
gsl_sf_result b;
int stat_K = gsl_sf_bessel_Knu_scaled_e(nu, x, &b);
int stat_e = gsl_sf_exp_mult_err_e(-x, 0.0, b.val, b.err, result);
return GSL_ERROR_SELECT_2(stat_e, stat_K);
}
int
gsl_sf_bessel_lnKnu_e(const double nu, const double x, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if(x <= 0.0 || nu < 0.0) {
DOMAIN_ERROR(result);
}
else if(nu == 0.0) {
gsl_sf_result K_scaled;
/* This cannot underflow, and
* it will not throw GSL_EDOM
* since that is already checked.
*/
gsl_sf_bessel_K0_scaled_e(x, &K_scaled);
result->val = -x log(fabs(K_scaled.val));
result->err = GSL_DBL_EPSILON * fabs(x) fabs(K_scaled.err/K_scaled.val);
result->err = GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else if(x < 2.0 && nu > 1.0) {
/* Make use of the inequality
* Knu(x) <= 1/2 (2/x)^nu Gamma(nu),
* which follows from the integral representation
* [Abramowitz Stegun, 9.6.23 (2)]. With this
* we decide whether or not there is an overflow
* problem because x is small.
*/
double ln_bound;
gsl_sf_result lg_nu;
gsl_sf_lngamma_e(nu, &lg_nu);
ln_bound = -M_LN2 - nu*log(0.5*x) lg_nu.val;
if(ln_bound > GSL_LOG_DBL_MAX - 20.0) {
/* x must be very small or nu very large (or both).
*/
double xi = 0.25*x*x;
double sum = 1.0 - xi/(nu-1.0);
if(nu > 2.0) sum = (xi/(nu-1.0)) * (xi/(nu-2.0));
result->val = ln_bound log(sum);
result->err = lg_nu.err;
result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
/* can drop-through here */
}
{
/* We passed the above tests, so no problem.
* Evaluate as usual. Note the possible drop-through
* in the above code!
*/
gsl_sf_result_e10 K_scaled;
int status = gsl_sf_bessel_Knu_scaled_e10_e(nu, x, &K_scaled);
result->val = -x log(fabs(K_scaled.val)) K_scaled.e10 * M_LN10;
result->err = GSL_DBL_EPSILON * fabs(x) fabs(K_scaled.err/K_scaled.val);
result->err = GSL_DBL_EPSILON * fabs(result->val);
return status;
}
}
/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
#include "eval.h"
double gsl_sf_bessel_Knu_scaled(const double nu, const double x)
{
EVAL_RESULT(gsl_sf_bessel_Knu_scaled_e(nu, x, &result));
}
double gsl_sf_bessel_Knu(const double nu, const double x)
{
EVAL_RESULT(gsl_sf_bessel_Knu_e(nu, x, &result));
}
double gsl_sf_bessel_lnKnu(const double nu, const double x)
{
EVAL_RESULT(gsl_sf_bessel_lnKnu_e(nu, x, &result));
}