-
Notifications
You must be signed in to change notification settings - Fork 25
/
util.go
executable file
·282 lines (256 loc) · 8.96 KB
/
util.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
// Copyright 2015 Alex Browne. All rights reserved.
// Use of this source code is governed by the MIT
// license, which can be found in the LICENSE file.
// File util.go contains miscellaneous utility functions used throughout
// the zoom library.
package zoom
import (
"fmt"
"hash/crc32"
"math/big"
"net"
"reflect"
"sync/atomic"
"time"
"github.com/dchest/uniuri"
"github.com/tv42/base58"
)
var (
// delString is used as a suffix for string index tricks. This is a string which equals the ASCII
// DEL character and is the highest possible value (in terms of codepoint, which is also
// how redis sorts strings) for an ASCII character.
delString = string([]byte{byte(127)})
// nullString is used as a suffix for string index tricks. This is a string which equals the ASCII
// NULL character and is the lowest possible value (in terms of codepoint, which is also
// how redis sorts strings) for an ASCII character.
nullString = string([]byte{byte(0)})
// hardwareID is a unique id for the current machine. Right now it uses the crc32 checksum of the MAC address.
hardwareID = ""
)
func init() {
// Set chars to the 58 non-ambiguous characters use by base58 encoding
uniuri.StdChars = []byte("123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz")
}
// Models converts in to []Model. It will panic if the underlying type
// of in is not a slice of some concrete type which implements Model.
func Models(in interface{}) []Model {
typ := reflect.TypeOf(in)
if !typeIsSliceOrArray(typ) {
msg := fmt.Sprintf("zoom: panic in Models() - attempt to convert invalid type %T to []Model.\nArgument must be slice or array.", in)
panic(msg)
}
elemTyp := typ.Elem()
if !typeIsPointerToStruct(elemTyp) {
msg := fmt.Sprintf("zoom: panic in Models() - attempt to convert invalid type %T to []Model.\nSlice or array must have elements of type pointer to struct.", in)
panic(msg)
}
val := reflect.ValueOf(in)
length := val.Len()
results := make([]Model, length)
for i := 0; i < length; i {
elemVal := val.Index(i)
model, ok := elemVal.Interface().(Model)
if !ok {
msg := fmt.Sprintf("zoom: panic in Models() - cannot convert type %T to Model", elemVal.Interface())
panic(msg)
}
results[i] = model
}
return results
}
// Interfaces converts in to []interface{}. It will panic if the underlying type
// of in is not a slice.
func Interfaces(in interface{}) []interface{} {
val := reflect.ValueOf(in)
length := val.Len()
results := make([]interface{}, length)
for i := 0; i < length; i {
elemVal := val.Index(i)
results[i] = elemVal.Interface()
}
return results
}
// indexOfStringSlice returns the index of s in strings, or
// -1 if a is not found in strings
func indexOfStringSlice(strings []string, s string) int {
for i, b := range strings {
if b == s {
return i
}
}
return -1
}
// stringSliceContains returns true iff strings contains s
func stringSliceContains(strings []string, s string) bool {
return indexOfStringSlice(strings, s) != -1
}
// removeElementFromStringSlice removes elem from list and returns
// the new slice.
func removeElementFromStringSlice(list []string, elem string) []string {
for i, e := range list {
if e == elem {
return append(list[:i], list[i 1:]...)
}
}
return list
}
// typeIsSliceOrArray returns true iff typ is a slice or array
func typeIsSliceOrArray(typ reflect.Type) bool {
k := typ.Kind()
return (k == reflect.Slice || k == reflect.Array) && typ.Elem().Kind() != reflect.Uint8
}
// typeIsPointerToStruct returns true iff typ is a pointer to a struct
func typeIsPointerToStruct(typ reflect.Type) bool {
return typ.Kind() == reflect.Ptr && typ.Elem().Kind() == reflect.Struct
}
// typeIsString returns true iff typ is a string or an array or slice of bytes
// (which is freely castable to a string)
func typeIsString(typ reflect.Type) bool {
k := typ.Kind()
return k == reflect.String || ((k == reflect.Slice || k == reflect.Array) && typ.Elem().Kind() == reflect.Uint8)
}
// typeIsNumeric returns true iff typ is one of the numeric primitive types
func typeIsNumeric(typ reflect.Type) bool {
k := typ.Kind()
switch k {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64:
return true
default:
return false
}
}
// typeIsBool returns true iff typ is a bool
func typeIsBool(typ reflect.Type) bool {
k := typ.Kind()
return k == reflect.Bool
}
// typeIsPrimative returns true iff typ is a primitive type, i.e. either a
// string, bool, or numeric type.
func typeIsPrimative(typ reflect.Type) bool {
return typeIsString(typ) || typeIsNumeric(typ) || typeIsBool(typ)
}
// numericScore returns a float64 which is the score for val in a sorted set.
// If val is a pointer, it will keep dereferencing until it reaches the underlying
// value. It panics if val is not a numeric type or a pointer to a numeric type.
func numericScore(val reflect.Value) float64 {
for val.Kind() == reflect.Ptr {
val = val.Elem()
}
switch val.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
integer := val.Int()
return float64(integer)
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
uinteger := val.Uint()
return float64(uinteger)
case reflect.Float32, reflect.Float64:
return val.Float()
default:
msg := fmt.Sprintf("zoom: attempt to call numericScore on non-numeric type %s", val.Type().String())
panic(msg)
}
}
// boolScore returns an int which is the score for val in a sorted set.
// If val is a pointer, it will keep dereferencing until it reaches the underlying
// value. It panics if val is not a boolean or a pointer to a boolean.
func boolScore(val reflect.Value) int {
for val.Kind() == reflect.Ptr {
val = val.Elem()
}
if val.Kind() != reflect.Bool {
msg := fmt.Sprintf("zoom: attempt to call boolScore on non-boolean type %s", val.Type().String())
panic(msg)
}
return convertBoolToInt(val.Bool())
}
// convertBoolToInt converts a bool to an int using the following rule:
// false = 0
// true = 1
func convertBoolToInt(b bool) int {
if b {
return 1
}
return 0
}
// modelIDs returns the ids for models
func modelIDs(models []Model) []string {
results := make([]string, len(models))
for i, m := range models {
results[i] = m.ModelID()
}
return results
}
// generateRandomID generates a pseudo-random string that is highly likely to be unique.
// The string is base58 encoded and consists of 4 components:
// 1. The current UTC unix time with second precision
// 2. An atomic counter which is always 4 characters long and cycles
// through the range of 0 to 11,316,495
// 3. A unique hardware identifier based on the MAC address of the
// current machine
// 4. A pseudo-randomly generated sequence of 6 characters
func generateRandomID() string {
return getTimeString() getAtomicCounter() getHardwareID() uniuri.NewLen(6)
}
// getTimeString returns the current UTC unix time with second precision encoded
// with base58 encoding.
func getTimeString() string {
timeInt := time.Now().UTC().Unix()
timeBytes := base58.EncodeBig(nil, big.NewInt(timeInt))
return string(timeBytes)
}
// getHardwareID returns a unique identifier for the current machine. It does this
// by iterating through the network interfaces of the machine and picking the first
// one that has a non-empty hardware (MAC) address. Then it takes the crc32 checksum
// of the MAC address and encodes it in base58 encoding. getHardwareID caches results,
// so subsequent calls will return the previously calculated result. If no MAC address
// could be found, the function will use "0" as the MAC address. This is not ideal, but
// generateRandomID uses other means to try and avoid collisions.
func getHardwareID() string {
if hardwareID != "" {
return hardwareID
}
address := ""
inters, err := net.Interfaces()
if err == nil {
for _, inter := range inters {
if inter.HardwareAddr.String() != "" {
address = inter.HardwareAddr.String()
break
}
}
}
if address == "" {
address = "0"
}
check32 := crc32.ChecksumIEEE([]byte(address))
id58 := base58.EncodeBig(nil, big.NewInt(int64(check32)))
hardwareID = string(id58)
return hardwareID
}
var counter int32
// getAtomicCounter returns the base58 encoding of a counter which cycles through
// the values in the range 0 to 11,316,495. This is the range that can be represented
// with 4 base58 characters. The returned result will be padded with zeros such that
// it is always 4 characters long.
func getAtomicCounter() string {
atomic.AddInt32(&counter, 1)
if counter > 58*58*58*58-1 {
// Reset the counter if we're beyond what we
// can represent with 4 base58 characters
atomic.StoreInt32(&counter, 0)
}
counterBytes := base58.EncodeBig(nil, big.NewInt(int64(counter)))
counterStr := string(counterBytes)
switch len(counterStr) {
case 0:
return "0000"
case 1:
return "000" counterStr
case 2:
return "00" counterStr
case 3:
return "0" counterStr
default:
return counterStr[0:4]
}
}