-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathrtsx_transport.c
856 lines (701 loc) · 21.6 KB
/
rtsx_transport.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
863
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
/* Driver for Realtek PCI-Express card reader
*
* Copyright(c) 2009 Realtek Semiconductor Corp. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any
* later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http:
*
* Author:
* wwang ([email protected])
* No. 450, Shenhu Road, Suzhou Industry Park, Suzhou, China
*/
#include <linux/blkdev.h>
#include <linux/kthread.h>
#include <linux/sched.h>
#include "rtsx.h"
#include "rtsx_scsi.h"
#include "rtsx_transport.h"
#include "rtsx_chip.h"
#include "rtsx_card.h"
#include "debug.h"
/***********************************************************************
* Scatter-gather transfer buffer access routines
***********************************************************************/
/* Copy a buffer of length buflen to/from the srb's transfer buffer.
* (Note: for scatter-gather transfers (srb->use_sg > 0), srb->request_buffer
* points to a list of s-g entries and we ignore srb->request_bufflen.
* For non-scatter-gather transfers, srb->request_buffer points to the
* transfer buffer itself and srb->request_bufflen is the buffer's length.)
* Update the *index and *offset variables so that the next copy will
* pick up from where this one left off. */
unsigned int rtsx_stor_access_xfer_buf(unsigned char *buffer,
unsigned int buflen, struct scsi_cmnd *srb, unsigned int *index,
unsigned int *offset, enum xfer_buf_dir dir)
{
unsigned int cnt;
/* If not using scatter-gather, just transfer the data directly.
* Make certain it will fit in the available buffer space. */
if (scsi_sg_count(srb) == 0) {
if (*offset >= scsi_bufflen(srb))
return 0;
cnt = min(buflen, scsi_bufflen(srb) - *offset);
if (dir == TO_XFER_BUF)
memcpy((unsigned char *) scsi_sglist(srb) + *offset,
buffer, cnt);
else
memcpy(buffer, (unsigned char *) scsi_sglist(srb) +
*offset, cnt);
*offset += cnt;
/* Using scatter-gather. We have to go through the list one entry
* at a time. Each s-g entry contains some number of pages, and
* each page has to be kmap()'ed separately. If the page is already
* in kernel-addressable memory then kmap() will return its address.
* If the page is not directly accessible -- such as a user buffer
* located in high memory -- then kmap() will map it to a temporary
* position in the kernel's virtual address space. */
} else {
struct scatterlist *sg =
(struct scatterlist *) scsi_sglist(srb)
+ *index;
/* This loop handles a single s-g list entry, which may
* include multiple pages. Find the initial page structure
* and the starting offset within the page, and update
* the *offset and *index values for the next loop. */
cnt = 0;
while (cnt < buflen && *index < scsi_sg_count(srb)) {
struct page *page = sg_page(sg) +
((sg->offset + *offset) >> PAGE_SHIFT);
unsigned int poff =
(sg->offset + *offset) & (PAGE_SIZE-1);
unsigned int sglen = sg->length - *offset;
if (sglen > buflen - cnt) {
sglen = buflen - cnt;
*offset += sglen;
} else {
*offset = 0;
++*index;
++sg;
}
/* Transfer the data for all the pages in this
* s-g entry. For each page: call kmap(), do the
* transfer, and call kunmap() immediately after. */
while (sglen > 0) {
unsigned int plen = min(sglen, (unsigned int)
PAGE_SIZE - poff);
unsigned char *ptr = kmap(page);
if (dir == TO_XFER_BUF)
memcpy(ptr + poff, buffer + cnt, plen);
else
memcpy(buffer + cnt, ptr + poff, plen);
kunmap(page);
poff = 0;
++page;
cnt += plen;
sglen -= plen;
}
}
}
return cnt;
}
/* Store the contents of buffer into srb's transfer buffer and set the
* SCSI residue. */
void rtsx_stor_set_xfer_buf(unsigned char *buffer,
unsigned int buflen, struct scsi_cmnd *srb)
{
unsigned int index = 0, offset = 0;
rtsx_stor_access_xfer_buf(buffer, buflen, srb, &index, &offset,
TO_XFER_BUF);
if (buflen < scsi_bufflen(srb))
scsi_set_resid(srb, scsi_bufflen(srb) - buflen);
}
void rtsx_stor_get_xfer_buf(unsigned char *buffer,
unsigned int buflen, struct scsi_cmnd *srb)
{
unsigned int index = 0, offset = 0;
rtsx_stor_access_xfer_buf(buffer, buflen, srb, &index, &offset,
FROM_XFER_BUF);
if (buflen < scsi_bufflen(srb))
scsi_set_resid(srb, scsi_bufflen(srb) - buflen);
}
/***********************************************************************
* Transport routines
***********************************************************************/
/* Invoke the transport and basic error-handling/recovery methods
*
* This is used to send the message to the device and receive the response.
*/
void rtsx_invoke_transport(struct scsi_cmnd *srb, struct rtsx_chip *chip)
{
int result;
result = rtsx_scsi_handler(srb, chip);
/* if the command gets aborted by the higher layers, we need to
* short-circuit all other processing
*/
if (rtsx_chk_stat(chip, RTSX_STAT_ABORT)) {
RTSX_DEBUGP(("-- command was aborted\n"));
srb->result = DID_ABORT << 16;
goto Handle_Errors;
}
if (result == TRANSPORT_ERROR) {
RTSX_DEBUGP(("-- transport indicates error, resetting\n"));
srb->result = DID_ERROR << 16;
goto Handle_Errors;
}
srb->result = SAM_STAT_GOOD;
/*
* If we have a failure, we're going to do a REQUEST_SENSE
* automatically. Note that we differentiate between a command
* "failure" and an "error" in the transport mechanism.
*/
if (result == TRANSPORT_FAILED) {
srb->result = SAM_STAT_CHECK_CONDITION;
memcpy(srb->sense_buffer, (unsigned char *)&(chip->sense_buffer[SCSI_LUN(srb)]),
sizeof(struct sense_data_t));
}
return;
/* Error and abort processing: try to resynchronize with the device
* by issuing a port reset. If that fails, try a class-specific
* device reset. */
Handle_Errors:
return;
}
/**
* rtsx_add_cmd - add a command to command buffer.
* @chip: Realtek's card reader chip
* @cmd_type: command type, including read/write/check register
* @reg_addr: internal card controller register address
* @mask: bit mask
* @data: register data
*
* Add a command to command buffer.
*
* Usually, this function is called after rtsx_init_cmd, which
* intializes the command index to zero. After all commands are added,
* rtsx_send_cmd or rtsx_send_cmd_no_wait should be called to send those
* commands to card reader chip.
*/
void rtsx_add_cmd(struct rtsx_chip *chip,
u8 cmd_type, u16 reg_addr, u8 mask, u8 data)
{
u32 *cb = (u32 *)(chip->host_cmds_ptr);
u32 val = 0;
val |= (u32)(cmd_type & 0x03) << 30;
val |= (u32)(reg_addr & 0x3FFF) << 16;
val |= (u32)mask << 8;
val |= (u32)data;
spin_lock_irq(&chip->rtsx->reg_lock);
if (chip->ci < (HOST_CMDS_BUF_LEN / 4)) {
cb[(chip->ci) ++] = cpu_to_le32(val);
}
spin_unlock_irq(&chip->rtsx->reg_lock);
}
/**
* rtsx_send_cmd_no_wait - send commands to chip.
* @chip: Realtek's card reader chip
*
* Trigger card reader chip to fetch commands from command buffer.
* This funtion returns immediately.
*/
void rtsx_send_cmd_no_wait(struct rtsx_chip *chip)
{
u32 val = 1 << 31;
rtsx_writel(chip, RTSX_HCBAR, chip->host_cmds_addr);
val |= (u32)(chip->ci * 4) & 0x00FFFFFF;
val |= 0x40000000;
rtsx_writel(chip, RTSX_HCBCTLR, val);
}
/**
* rtsx_send_cmd - send commands to chip.
* @chip: Realtek's card reader chip
* @card: this command is relevant to card or not
* @timeout: time out in millisecond
*
* Trigger card reader chip to fetch commands from command buffer.
* This funtion will wait for transfer-finished interrupt.
*
* Returns zero if successful, or a negative error code on failure.
*/
int rtsx_send_cmd(struct rtsx_chip *chip, u8 card, int timeout)
{
struct rtsx_dev *rtsx = chip->rtsx;
struct completion trans_done;
u32 val = 1 << 31;
long timeleft;
int err = 0;
if (card == SD_CARD) {
rtsx->check_card_cd = SD_EXIST;
} else if (card == MS_CARD) {
rtsx->check_card_cd = MS_EXIST;
} else {
rtsx->check_card_cd = 0;
}
spin_lock_irq(&rtsx->reg_lock);
rtsx->done = &trans_done;
rtsx->trans_result = TRANS_NOT_READY;
init_completion(&trans_done);
rtsx->trans_state = STATE_TRANS_CMD;
rtsx_writel(chip, RTSX_HCBAR, chip->host_cmds_addr);
val |= (u32)(chip->ci * 4) & 0x00FFFFFF;
val |= 0x40000000;
rtsx_writel(chip, RTSX_HCBCTLR, val);
spin_unlock_irq(&rtsx->reg_lock);
timeleft = wait_for_completion_interruptible_timeout(&trans_done, timeout * HZ / 1000);
if (timeleft <= 0) {
RTSX_DEBUGP(("chip->int_reg = 0x%x\n", chip->int_reg));
err = -ETIMEDOUT;
TRACE_GOTO(chip, finish_send_cmd);
}
spin_lock_irq(&rtsx->reg_lock);
if (rtsx->trans_result == TRANS_RESULT_FAIL) {
err = -EIO;
} else if (rtsx->trans_result == TRANS_RESULT_OK) {
err = 0;
}
spin_unlock_irq(&rtsx->reg_lock);
finish_send_cmd:
rtsx->done = NULL;
rtsx->trans_state = STATE_TRANS_NONE;
if (err < 0) {
rtsx_stop_cmd(chip, card);
}
return err;
}
/**
* rtsx_add_sg_tbl - add a sg entry to sg table.
* @chip: Realtek's card reader chip
* @addr: address of host DMA buffer to transfer data
* @len: buffer length in bytes
* @option: option
*
* Add a sg entry to sg table.
*
* Note: The length field is 20-bit long. So if the buffer length is
* longer than 0x80000, this function will divide the buffer into
* several small buffers to ensure the length field won't overflow.
*/
static inline void rtsx_add_sg_tbl(struct rtsx_chip *chip, u32 addr, u32 len, u8 option)
{
u64 *sgb = (u64 *)(chip->host_sg_tbl_ptr);
u64 val = 0;
u32 temp_len = 0;
u8 temp_opt = 0;
do {
if (len > 0x80000) {
temp_len = 0x80000;
temp_opt = option & (~SG_END);
} else {
temp_len = len;
temp_opt = option;
}
val = ((u64)addr << 32) | ((u64)temp_len << 12) | temp_opt;
if (chip->sgi < (HOST_SG_TBL_BUF_LEN / 8)) {
sgb[(chip->sgi) ++] = cpu_to_le64(val);
}
len -= temp_len;
addr += temp_len;
} while (len);
}
/**
* rtsx_transfer_sglist_adma_partial - transfer sg list partially in adma mode
* @chip: Realtek's card reader chip
* @card: this command is relevant to card or not
* @sg: scatter-gather list
* @num_sg: entry count of sg list
* @index: next transfer will pick up from which sg entry
* @offset: next transfer will pick up from the offset in the sg entry
* @size: transfer size in bytes
* @dma_dir: transfer direction (DMA_FROM_DEVICE or DMA_TO_DEVICE)
* @timeout: time out in millisecond
*
* Transfer partial data in scatter-gather mode. In this mode,
* ADMA option will be turned on.
*
* This function is usually called in MS card flow. In MS
* read/write function, one transfer stage will be divided to several stages.
* The *index and *offset variables are used to record the postion in
* scatter-gather list that the next transfer will pick up.
*/
static int rtsx_transfer_sglist_adma_partial(struct rtsx_chip *chip, u8 card, struct scatterlist *sg,
int num_sg, unsigned int *index, unsigned int *offset, int size,
enum dma_data_direction dma_dir, int timeout)
{
struct rtsx_dev *rtsx = chip->rtsx;
struct completion trans_done;
u8 dir;
int sg_cnt, i, resid;
int err = 0;
long timeleft;
struct scatterlist *sg_ptr;
u32 val = TRIG_DMA;
if ((sg == NULL) || (num_sg <= 0) || !offset || !index) {
return -EIO;
}
if (dma_dir == DMA_TO_DEVICE) {
dir = HOST_TO_DEVICE;
} else if (dma_dir == DMA_FROM_DEVICE) {
dir = DEVICE_TO_HOST;
} else {
return -ENXIO;
}
if (card == SD_CARD) {
rtsx->check_card_cd = SD_EXIST;
} else if (card == MS_CARD) {
rtsx->check_card_cd = MS_EXIST;
} else {
rtsx->check_card_cd = 0;
}
spin_lock_irq(&rtsx->reg_lock);
rtsx->done = &trans_done;
rtsx->trans_state = STATE_TRANS_SG;
rtsx->trans_result = TRANS_NOT_READY;
spin_unlock_irq(&rtsx->reg_lock);
sg_cnt = dma_map_sg(&(rtsx->pci->dev), sg, num_sg, dma_dir);
resid = size;
sg_ptr = sg;
chip->sgi = 0;
for (i = 0; i < *index; i++) {
sg_ptr = sg_next(sg_ptr);
}
for (i = *index; i < sg_cnt; i++) {
dma_addr_t addr;
unsigned int len;
u8 option;
addr = sg_dma_address(sg_ptr);
len = sg_dma_len(sg_ptr);
RTSX_DEBUGP(("DMA addr: 0x%x, Len: 0x%x\n", (unsigned int)addr, len));
RTSX_DEBUGP(("*index = %d, *offset = %d\n", *index, *offset));
addr += *offset;
if ((len - *offset) > resid) {
*offset += resid;
len = resid;
resid = 0;
} else {
resid -= (len - *offset);
len -= *offset;
*offset = 0;
*index = *index + 1;
}
if ((i == (sg_cnt - 1)) || !resid) {
option = SG_VALID | SG_END | SG_TRANS_DATA;
} else {
option = SG_VALID | SG_TRANS_DATA;
}
rtsx_add_sg_tbl(chip, (u32)addr, (u32)len, option);
if (!resid) {
break;
}
sg_ptr = sg_next(sg_ptr);
}
RTSX_DEBUGP(("SG table count = %d\n", chip->sgi));
val |= (u32)(dir & 0x01) << 29;
val |= ADMA_MODE;
spin_lock_irq(&rtsx->reg_lock);
init_completion(&trans_done);
rtsx_writel(chip, RTSX_HDBAR, chip->host_sg_tbl_addr);
rtsx_writel(chip, RTSX_HDBCTLR, val);
spin_unlock_irq(&rtsx->reg_lock);
timeleft = wait_for_completion_interruptible_timeout(&trans_done, timeout * HZ / 1000);
if (timeleft <= 0) {
RTSX_DEBUGP(("Timeout (%s %d)\n", __FUNCTION__, __LINE__));
RTSX_DEBUGP(("chip->int_reg = 0x%x\n", chip->int_reg));
err = -ETIMEDOUT;
goto out;
}
spin_lock_irq(&rtsx->reg_lock);
if (rtsx->trans_result == TRANS_RESULT_FAIL) {
err = -EIO;
spin_unlock_irq(&rtsx->reg_lock);
goto out;
}
spin_unlock_irq(&rtsx->reg_lock);
spin_lock_irq(&rtsx->reg_lock);
if (rtsx->trans_result == TRANS_NOT_READY) {
init_completion(&trans_done);
spin_unlock_irq(&rtsx->reg_lock);
timeleft = wait_for_completion_interruptible_timeout(&trans_done, timeout * HZ / 1000);
if (timeleft <= 0) {
RTSX_DEBUGP(("Timeout (%s %d)\n", __FUNCTION__, __LINE__));
RTSX_DEBUGP(("chip->int_reg = 0x%x\n", chip->int_reg));
err = -ETIMEDOUT;
goto out;
}
} else {
spin_unlock_irq(&rtsx->reg_lock);
}
spin_lock_irq(&rtsx->reg_lock);
if (rtsx->trans_result == TRANS_RESULT_FAIL) {
err = -EIO;
} else if (rtsx->trans_result == TRANS_RESULT_OK) {
err = 0;
}
spin_unlock_irq(&rtsx->reg_lock);
out:
rtsx->done = NULL;
rtsx->trans_state = STATE_TRANS_NONE;
dma_unmap_sg(&(rtsx->pci->dev), sg, num_sg, dma_dir);
if (err < 0) {
rtsx_stop_cmd(chip, card);
}
if (err == -ETIMEDOUT) {
CATCH_TRIGGER1(chip);
}
return err;
}
/**
* rtsx_transfer_sglist_adma - transfer sg list in adma mode
* @chip: Realtek's card reader chip
* @card: this command is relevant to card or not
* @sg: scatter-gather list
* @num_sg: entry count of sg list
* @dma_dir: transfer direction (DMA_FROM_DEVICE or DMA_TO_DEVICE)
* @timeout: time out in millisecond
*
* Transfer data in scatter-gather mode. In this mode, ADMA option will be turned on.
*/
static int rtsx_transfer_sglist_adma(struct rtsx_chip *chip, u8 card, struct scatterlist *sg,
int num_sg, enum dma_data_direction dma_dir, int timeout)
{
struct rtsx_dev *rtsx = chip->rtsx;
struct completion trans_done;
u8 dir;
int buf_cnt, i;
int err = 0;
long timeleft;
struct scatterlist *sg_ptr;
if ((sg == NULL) || (num_sg <= 0)) {
return -EIO;
}
if (dma_dir == DMA_TO_DEVICE) {
dir = HOST_TO_DEVICE;
} else if (dma_dir == DMA_FROM_DEVICE) {
dir = DEVICE_TO_HOST;
} else {
return -ENXIO;
}
if (card == SD_CARD) {
rtsx->check_card_cd = SD_EXIST;
} else if (card == MS_CARD) {
rtsx->check_card_cd = MS_EXIST;
} else {
rtsx->check_card_cd = 0;
}
spin_lock_irq(&rtsx->reg_lock);
rtsx->done = &trans_done;
rtsx->trans_state = STATE_TRANS_SG;
rtsx->trans_result = TRANS_NOT_READY;
spin_unlock_irq(&rtsx->reg_lock);
buf_cnt = dma_map_sg(&(rtsx->pci->dev), sg, num_sg, dma_dir);
sg_ptr = sg;
for (i = 0; i <= buf_cnt / (HOST_SG_TBL_BUF_LEN / 8); i++) {
u32 val = TRIG_DMA;
int sg_cnt, j;
if (i == buf_cnt / (HOST_SG_TBL_BUF_LEN / 8)) {
sg_cnt = buf_cnt % (HOST_SG_TBL_BUF_LEN / 8);
} else {
sg_cnt = (HOST_SG_TBL_BUF_LEN / 8);
}
chip->sgi = 0;
for (j = 0; j < sg_cnt; j++) {
dma_addr_t addr = sg_dma_address(sg_ptr);
unsigned int len = sg_dma_len(sg_ptr);
u8 option;
RTSX_DEBUGP(("DMA addr: 0x%x, Len: 0x%x\n", (unsigned int)addr, len));
if (j == (sg_cnt - 1)) {
option = SG_VALID | SG_END | SG_TRANS_DATA;
} else {
option = SG_VALID | SG_TRANS_DATA;
}
rtsx_add_sg_tbl(chip, (u32)addr, (u32)len, option);
sg_ptr = sg_next(sg_ptr);
}
RTSX_DEBUGP(("SG table count = %d\n", chip->sgi));
val |= (u32)(dir & 0x01) << 29;
val |= ADMA_MODE;
spin_lock_irq(&rtsx->reg_lock);
init_completion(&trans_done);
rtsx_writel(chip, RTSX_HDBAR, chip->host_sg_tbl_addr);
rtsx_writel(chip, RTSX_HDBCTLR, val);
spin_unlock_irq(&rtsx->reg_lock);
timeleft = wait_for_completion_interruptible_timeout(&trans_done, timeout * HZ / 1000);
if (timeleft <= 0) {
RTSX_DEBUGP(("Timeout (%s %d)\n", __FUNCTION__, __LINE__));
RTSX_DEBUGP(("chip->int_reg = 0x%x\n", chip->int_reg));
err = -ETIMEDOUT;
goto out;
}
spin_lock_irq(&rtsx->reg_lock);
if (rtsx->trans_result == TRANS_RESULT_FAIL) {
err = -EIO;
spin_unlock_irq(&rtsx->reg_lock);
goto out;
}
spin_unlock_irq(&rtsx->reg_lock);
sg_ptr += sg_cnt;
}
spin_lock_irq(&rtsx->reg_lock);
if (rtsx->trans_result == TRANS_NOT_READY) {
init_completion(&trans_done);
spin_unlock_irq(&rtsx->reg_lock);
timeleft = wait_for_completion_interruptible_timeout(&trans_done, timeout * HZ / 1000);
if (timeleft <= 0) {
RTSX_DEBUGP(("Timeout (%s %d)\n", __FUNCTION__, __LINE__));
RTSX_DEBUGP(("chip->int_reg = 0x%x\n", chip->int_reg));
err = -ETIMEDOUT;
goto out;
}
} else {
spin_unlock_irq(&rtsx->reg_lock);
}
spin_lock_irq(&rtsx->reg_lock);
if (rtsx->trans_result == TRANS_RESULT_FAIL) {
err = -EIO;
} else if (rtsx->trans_result == TRANS_RESULT_OK) {
err = 0;
}
spin_unlock_irq(&rtsx->reg_lock);
out:
rtsx->done = NULL;
rtsx->trans_state = STATE_TRANS_NONE;
dma_unmap_sg(&(rtsx->pci->dev), sg, num_sg, dma_dir);
if (err < 0) {
rtsx_stop_cmd(chip, card);
}
if (err == -ETIMEDOUT) {
CATCH_TRIGGER1(chip);
}
return err;
}
/**
* rtsx_transfer_buf - transfer data in linear buffer.
* @chip: Realtek's card reader chip
* @card: this command is relevant to card or not
* @buf: data buffer
* @len: buffer length
* @dma_dir: transfer direction (DMA_FROM_DEVICE or DMA_TO_DEVICE)
* @timeout: time out in millisecond
*
* Transfer data in linear buffer.
*/
static int rtsx_transfer_buf(struct rtsx_chip *chip, u8 card, void *buf, size_t len,
enum dma_data_direction dma_dir, int timeout)
{
struct rtsx_dev *rtsx = chip->rtsx;
struct completion trans_done;
dma_addr_t addr;
u8 dir;
int err = 0;
u32 val = (1 << 31);
long timeleft;
if ((buf == NULL) || (len <= 0)) {
return -EIO;
}
if (dma_dir == DMA_TO_DEVICE) {
dir = HOST_TO_DEVICE;
} else if (dma_dir == DMA_FROM_DEVICE) {
dir = DEVICE_TO_HOST;
} else {
return -ENXIO;
}
addr = dma_map_single(&(rtsx->pci->dev), buf, len, dma_dir);
if (!addr) {
return -ENOMEM;
}
if (card == SD_CARD) {
rtsx->check_card_cd = SD_EXIST;
} else if (card == MS_CARD) {
rtsx->check_card_cd = MS_EXIST;
} else {
rtsx->check_card_cd = 0;
}
val |= (u32)(dir & 0x01) << 29;
val |= (u32)(len & 0x00FFFFFF);
spin_lock_irq(&rtsx->reg_lock);
rtsx->done = &trans_done;
init_completion(&trans_done);
rtsx->trans_state = STATE_TRANS_BUF;
rtsx->trans_result = TRANS_NOT_READY;
rtsx_writel(chip, RTSX_HDBAR, addr);
rtsx_writel(chip, RTSX_HDBCTLR, val);
spin_unlock_irq(&rtsx->reg_lock);
timeleft = wait_for_completion_interruptible_timeout(&trans_done, timeout * HZ / 1000);
if (timeleft <= 0) {
RTSX_DEBUGP(("Timeout (%s %d)\n", __FUNCTION__, __LINE__));
RTSX_DEBUGP(("chip->int_reg = 0x%x\n", chip->int_reg));
err = -ETIMEDOUT;
goto out;
}
spin_lock_irq(&rtsx->reg_lock);
if (rtsx->trans_result == TRANS_RESULT_FAIL) {
err = -EIO;
} else if (rtsx->trans_result == TRANS_RESULT_OK) {
err = 0;
}
spin_unlock_irq(&rtsx->reg_lock);
out:
rtsx->done = NULL;
rtsx->trans_state = STATE_TRANS_NONE;
dma_unmap_single(&(rtsx->pci->dev), addr, len, dma_dir);
if (err < 0) {
rtsx_stop_cmd(chip, card);
}
if (err == -ETIMEDOUT) {
CATCH_TRIGGER1(chip);
}
return err;
}
int rtsx_transfer_data_partial(struct rtsx_chip *chip, u8 card, void *buf, size_t len,
int use_sg, unsigned int *index, unsigned int *offset,
enum dma_data_direction dma_dir, int timeout)
{
int err = 0;
if (rtsx_chk_stat(chip, RTSX_STAT_ABORT)) {
return -EIO;
}
if (use_sg) {
err = rtsx_transfer_sglist_adma_partial(chip, card, (struct scatterlist *)buf,
use_sg, index, offset, (int)len, dma_dir, timeout);
} else {
err = rtsx_transfer_buf(chip, card, buf, len, dma_dir, timeout);
}
if (err < 0) {
if (RTSX_TST_DELINK(chip)) {
RTSX_CLR_DELINK(chip);
chip->need_reinit = SD_CARD | MS_CARD;
rtsx_reinit_cards(chip, 1);
}
}
return err;
}
int rtsx_transfer_data(struct rtsx_chip *chip, u8 card, void *buf, size_t len,
int use_sg, enum dma_data_direction dma_dir, int timeout)
{
int err = 0;
RTSX_DEBUGP(("use_sg = %d\n", use_sg));
if (rtsx_chk_stat(chip, RTSX_STAT_ABORT)) {
return -EIO;
}
if (use_sg) {
err = rtsx_transfer_sglist_adma(chip, card, (struct scatterlist *)buf,
use_sg, dma_dir, timeout);
} else {
err = rtsx_transfer_buf(chip, card, buf, len, dma_dir, timeout);
}
if (err < 0) {
if (RTSX_TST_DELINK(chip)) {
RTSX_CLR_DELINK(chip);
chip->need_reinit = SD_CARD | MS_CARD;
rtsx_reinit_cards(chip, 1);
}
}
return err;
}