Skip to content
/ DISN Public

(latest updates and bug fixed) DISN: Deep Implicit Surface Network for High-quality Single-view 3D Reconstruction

Notifications You must be signed in to change notification settings

Xharlie/DISN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DISN: Deep Implicit Surface Network for High-quality Single-view 3D Reconstruction    

(will incorporate latest updates)

  • We just released a rendered datasets of Shapenet with more view variations that contains RGB, albedo, depth and normal 2D images. Rendering scripts for both v1 and v2 are available.

Please cite our paper DISN: Deep Implicit Surface Network for High-quality Single-view 3D Reconstruction (NeurIPS 2019)

@incollection{NIPS2019_8340,
title = {DISN: Deep Implicit Surface Network for High-quality Single-view 3D Reconstruction},
author = {Xu, Qiangeng and Wang, Weiyue and Ceylan, Duygu and Mech, Radomir and Neumann, Ulrich},
booktitle = {Advances in Neural Information Processing Systems 32},
editor = {H. Wallach and H. Larochelle and A. Beygelzimer and F. d\textquotesingle Alch\'{e}-Buc and E. Fox and R. Garnett},
pages = {492--502},
year = {2019},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/8340-disn-deep-implicit-surface-network-for-high-quality-single-view-3d-reconstruction.pdf}
}

Primary contact: Qiangeng Xu*

System Requirements

  • GPU: 1080Ti (Other models can consider decrease the batch size if overflow)

  • system: Ubuntu 16.04 (if your linux version can support tensorflow 1.10, it's going to be ok)

  • tensorflow 1.10(should be able to run with 1.11, 1.12,1.13)

    pip install trimesh==2.37.20

Installation

  cd {DISN}
  mkdir checkpoint
  cd checkpoint
  wget https://www.dropbox.com/s/2ts7qc9w4opl4w4/SDF_DISN.tar 
  ### or google drive: https://drive.google.com/file/d/1PEXVxXflVqWNqinSMC-hFmFdlMyoMZ7i/view?usp=sharing
  ### or baidu yunpan: https://pan.baidu.com/s/1Zujo84JoTcTW5dUl0AvS_w   extraction code: esy9
  tar -xvzf SDF_DISN.tar
  rm -rf SDF_DISN.tar
  cd ..
  mkdir cam_est/checkpoint
  cd cam_est/checkpoint
  wget https://www.dropbox.com/s/hyv4lcvpfu0au9e/cam_DISN.tar
  ### or google drive https://drive.google.com/file/d/1S5Gh_u1C9vDvksqXDn3CP6IqsnU0hKkj/view?usp=sharing
  ### or baidu yunpan: https://pan.baidu.com/s/1lEHmSHA1o5lrswp0TM50qA   extraction code: gbb3
  tar -xvzf cam_DISN.tar
  rm -rf cam_DISN.tar
  cd ../../
  Install whatever libary(e.g. mkl) you don't have and change corresponding libary path in your system in isosurface/LIB_PATH

Demo:

  • --sdf_res control the resolution of the sampled sdf, default is 64, the larger, the more fine-grained, but slower.
  cd {DISN}
  source isosurface/LIB_PATH
  nohup python -u demo/demo.py --cam_est --log_dir checkpoint/SDF_DISN --cam_log_dir cam_est/checkpoint/cam_DISN --img_feat_twostream --sdf_res 256 &> log/create_sdf.log &

The result is demo/result.obj. if you have dependency problems such as your mkl lib, etc. Please install the corresponding dependencies and change the path in LIB_PATH. Everyone has his/her/their own environment setting so it's impossible to instruct this step without sitting besides you and your server.

Data Preparation

  • file location setup:

    • under preprocessing/info.json, you can change the locations of your data: the neccessary dir for the main model are :
         "raw_dirs_v1": {
         "mesh_dir": "/ssd1/datasets/ShapeNet/ShapeNetCore.v1/",
         "norm_mesh_dir": "/ssd1/datasets/ShapeNet/march_cube_objs_v1/",
         "rendered_dir": "/ssd1/datasets/ShapeNet/ShapeNetRendering/",
         "renderedh5_dir": "/ssd1/datasets/ShapeNet/ShapeNetRenderingh5_v1/",
         "sdf_dir": "/ssd1/datasets/ShapeNet/SDF_v1/"
         }
    
  • Download ShapeNetCore.v1

    download the dataset following the instruction of https://www.shapenet.org/account/ (about 30GB)

    cd {your download dir}
    wget http://shapenet.cs.stanford.edu/shapenet/obj-zip/ShapeNetCore.v1.zip 
    unzip ShapeNetCore.v1.zip -d {your mesh_dir}
    
  • Prepare the SDF ground truth and the marching cube reconstructed ground truth models

    Download our generated sdf tar.gz from here then place it at your "sdf_dir" in json; and the marching cube reconstructed ground truth models from the sdf file from here then place it at your "norm_mesh_dir" in your json.

    If you want to generate sdf files and the reconstructed models by yourself, please follow the command lines below (Please expect the script to run for several hours). This step used this paper Vega: non-linear fem deformable object simulator. Please also cite it if you use our code to generate sdf files

    mkdir log
    cd {DISN}
    source isosurface/LIB_PATH
    nohup python -u preprocessing/create_point_sdf_grid.py --thread_num {recommend 9} --category {default 'all', but can be single category like 'chair'} &> log/create_sdf.log &
    
    ## SDF folder takes about 9.0G, marching cube obj folder takes about 245G
    
    
  • Download and generate 2d image h5 files:

    wget http://cvgl.stanford.edu/data2/ShapeNetRendering.tgz
    untar it to {your rendered_dir}
    
    • run h5 file generation (about 26 GB) :

    cd {DISN}
    nohup python -u preprocessing/create_img_h5.py &> log/create_imgh5.log &
    

Camera parameters estimation network

  • train the camera parameters estimation network:

    ### train the camera poses of the original rendered image dataset. 
      nohup python -u cam_est/train_sdf_cam.py --log_dir cam_est/checkpoint/{your training checkpoint dir} --gpu 0 --loss_mode 3D --learning_rate 2e-5 &> log/cam_3D_all.log &
     
    ### train the camera poses of the adding 2 more DoF augmented on the rendered image dataset. 
      nohup python -u cam_est/train_sdf_cam.py --log_dir cam_est/checkpoint/{your training checkpoint dir} --gpu 2 --loss_mode 3D --learning_rate 1e-4 --shift --shift_weight 2 &> log/cam_3D_shift2_all.log &
    
    
  • if use new rendered 2d dataset:

    ### train the camera poses of the new rendered image dataset. 
     nohup python -u cam_est/train_sdf_cam.py --log_dir cam_est/checkpoint/{your checkpoint dir} --gpu 0 --loss_mode 3D --learning_rate 1e-4 --src_h5_dir {your new rendered images' h5 directory} --img_h 224 --img_w 224 &> log/cam_3D_easy.log & 
      
    
  • create h5 file of image and estimated cam parameters:

    ### Create img_h5 to {renderedh5_dir_est} in your info.json, the default is only generate h5 of test images and cam parameters(about 5.3GB) 
    nohup python -u train_sdf_cam.py --img_h5_dir {renderedh5_dir_est} --create --restore_model checkpoint/cam_3D_all --log_dir checkpoint/{your training checkpoint dir} --gpu 0--loss_mode 3D --batch_size 24 &> log/create_cam_mixloss_all.log &
    

SDF generation network:

  • train the sdf generation with provided camera parameters:

    if train from scratch, you can load official pretrained vgg_16 by setting --restore_modelcnn; or you can --restore_model to your checkpoint to continue the training):

    • support flip the background color from black to white since most online images have white background(by using --backcolorwhite)
    • if use flag --cam_est, the img_h5 is loaded from {renderedh5_dir_est} instead of {renderedh5_dir}, so that we can train the generation on the estimated camera parameters
    nohup python -u train/train_sdf.py --gpu 0 --img_feat_twostream --restore_modelcnn ./models/CNN/pretrained_model/vgg_16.ckpt --log_dir checkpoint/{your training checkpoint dir} --category all --num_sample_points 2048 --batch_size 20 --learning_rate 0.0001 --cat_limit 36000 &> log/DISN_train_all.log &
    
  • inference sdf and create mesh objects:

    • will save objs in {your training checkpoint dir}/test_objs/{sdf_res 1}_{iso}
    • will save objs in {your training checkpoint dir}/test_objs/{sdf_res 1}_{iso}
    • if use estimated camera post, --cam_est, will save objs in {your training checkpoint dir}/test_objs/camest_{sdf_res 1}_{iso}
    • if only create chair or a single category, --category {chair or a single category}
    • --sdf_res control the resolution of the sampled sdf, default is 64, the larger, the more fine-grained, but slower.
    source isosurface/LIB_PATH
    
    #### use ground truth camera pose
    nohup python -u test/create_sdf.py --img_feat_twostream --view_num 24 --sdf_res 64 --batch_size 1  --gpu 0 --sdf_res 64 --log_dir checkpoint/{your training checkpoint dir} --iso 0.00 --category all  &> log/DISN_create_all.log &
    
    #### use estimated camera pose
    nohup python -u test/create_sdf.py --img_feat_twostream --view_num 24 --sdf_res 64 --batch_size 1  --gpu 3 --sdf_res 64 --log_dir checkpoint/{your training checkpoint dir} --iso 0.00 --category all --cam_est &> log/DISN_create_all_cam.log &
    
  • clean small objects:

    • if the model doens't converge well, you can clean flying parts that generated by mistakes

    nohup python -u clean_smallparts.py --src_dir checkpoint/{your training checkpoint dir}/test_objs/65_0.0 --tar_dir checkpoint/{your training checkpoint dir}/test_objs/65_0.0 --thread_n 10 &> log/DISN_clean.log &
    

Evaluation:

please compile models/tf_ops/ approxmatch and nn_distance and cites "A Point Set Generation Network for 3D Object Reconstruction from a Single Image"

  • Chamfer Distance and Earth Mover Distance:

    • cal_dir specify which obj folder to be tested, e.g. if only test watercraft, --category watercraft

     nohup python -u test/test_cd_emd.py --img_feat_twostream --view_num 24 --num_sample_points 2048 --gpu 0 --batch_size 24 --log_dir checkpoint/{your training checkpoint dir} --cal_dir checkpoint/{your training checkpoint dir}/test_objs/65_0.0 --category all &> log/DISN_cd_emd_all.log & 
    
  • F-Score caluculation:

    • cal_dir specify which obj folder to be tested, e.g. if only test watercraft, --category watercraft also the threshold of true can be set, here we use 2.5 for default:
     nohup python -u test/test_f_score.py --img_feat_twostream --view_num 24 --num_sample_points 2048 --gpu 0 --batch_size 24 --log_dir checkpoint/{your training checkpoint dir} --cal_dir checkpoint/{your training checkpoint dir}/test_objs/65_0.0 --category all --truethreshold 2.5 &> log/DISN_fscore_2.5.log & 
    
  • IOU caluculation:

    • cal_dir specify which obj folder to be tested, e.g. if only test watercraft, --category watercraft
    • --dim specify the number of voxels along each 3D dimension.
      nohup python -u test/test_iou.py --img_feat_twostream --view_num 24 --log_dir checkpoint/{your training checkpoint dir} --cal_dir checkpoint/{your training checkpoint dir}/test_objs/65_0.0 --category all --dim 110 &> DISN_iou_all.log &