-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_sgrv1.sh
37 lines (30 loc) · 1.29 KB
/
run_sgrv1.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
tasks=open_microwave
demos=5
demo_path=data # path to the dataset
batch_size=32
start_seed=0
logdir=logs # path to save logs
training_iterations=20000 # increase training_iterations when number of demos increase
save_freq=$((training_iterations/25))
method=SGR
lr=0.003
color_drop=0.2
use_semantic=[5]
pretrained_model=clip
tag=sgrv1-demos_${demos}-iter_${training_iterations}
model=pointnext-s_cls
test_type=missing5 # eval last 5 checkpoints
test_envs=5
test_episodes=50
i=0 # GPU id
# Training
CUDA_VISIBLE_DEVICES=$i python train.py \
rlbench.tasks=$tasks rlbench.demos=$demos rlbench.demo_path=$demo_path/train replay.batch_size=$batch_size \
framework.start_seed=$start_seed framework.logdir=$logdir framework.save_freq=$save_freq framework.training_iterations=$training_iterations \
method=$method method.lr=$lr method.color_drop=$color_drop method.use_semantic=$use_semantic method.pretrained_model=$pretrained_model \
method.tag=$tag model=$model
# Evaluation
CUDA_VISIBLE_DEVICES=$i python eval.py \
rlbench.tasks=$tasks rlbench.demo_path=$demo_path/test framework.start_seed=$start_seed framework.logdir=$logdir \
framework.eval_type=$test_type framework.eval_envs=$test_envs framework.eval_episodes=$test_episodes \
method.name=$method method.tag=$tag model.name=$model