-
Notifications
You must be signed in to change notification settings - Fork 3
/
models.py
48 lines (37 loc) · 1.28 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch.nn as nn
import torch
import torch.nn.functional as F
class Flatten(nn.Module):
def forward(self, x):
return x.view(x.size(0), -1)
def get_model(conf):
model = None
if conf.model.lower() == "fc":
model = fully_connected(conf)
else:
raise NameError("Modelname: {} does not exist!".format(conf.model))
model = model.to(conf.device)
return model
def get_activation_function(activation_function):
af = None
if activation_function == "ReLU":
af = nn.ReLU
elif activation_function == "sigmoid":
af = nn.Sigmoid
else:
af = nn.ReLU
return af
class fully_connected(nn.Module):
def __init__(self, sizes, act_fun, mean = 0.0, std = 1.0):
super(fully_connected, self).__init__()
self.act_fn = get_activation_function(act_fun)
self.mean = mean
self.std = std
layer_list = [Flatten()]
for i in range(len(sizes)-1):
layer_list.append(nn.Linear(sizes[i], sizes[i 1]))
layer_list.append(self.act_fn())
self.layers = nn.Sequential(*layer_list)
def forward(self, x):
x = (x - self.mean)/self.std
return self.layers(x)