-
Notifications
You must be signed in to change notification settings - Fork 19.6k
/
KMP.java
60 lines (51 loc) · 1.65 KB
/
KMP.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
package com.thealgorithms.strings;
/**
* Implementation of Knuth–Morris–Pratt algorithm Usage: see the main function
* for an example
*/
public final class KMP {
private KMP() {
}
// a working example
public static void main(String[] args) {
final String haystack = "AAAAABAAABA"; // This is the full string
final String needle = "AAAA"; // This is the substring that we want to find
kmpMatcher(haystack, needle);
}
// find the starting index in string haystack[] that matches the search word P[]
public static void kmpMatcher(final String haystack, final String needle) {
final int m = haystack.length();
final int n = needle.length();
final int[] pi = computePrefixFunction(needle);
int q = 0;
for (int i = 0; i < m; i ) {
while (q > 0 && haystack.charAt(i) != needle.charAt(q)) {
q = pi[q - 1];
}
if (haystack.charAt(i) == needle.charAt(q)) {
q ;
}
if (q == n) {
System.out.println("Pattern starts: " (i 1 - n));
q = pi[q - 1];
}
}
}
// return the prefix function
private static int[] computePrefixFunction(final String p) {
final int n = p.length();
final int[] pi = new int[n];
pi[0] = 0;
int q = 0;
for (int i = 1; i < n; i ) {
while (q > 0 && p.charAt(q) != p.charAt(i)) {
q = pi[q - 1];
}
if (p.charAt(q) == p.charAt(i)) {
q ;
}
pi[i] = q;
}
return pi;
}
}