You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
reacted with thumbs up emoji reacted with thumbs down emoji reacted with laugh emoji reacted with hooray emoji reacted with confused emoji reacted with heart emoji reacted with rocket emoji reacted with eyes emoji
-
我想要比较 Llama2-chinese 模型跟 ChatGLM2-6B 模型对中文总结这个任务的生成效果,打分方法采用是的 HuggingFace https://huggingface.co/docs/transformers/perplexity 这篇博客中提到的 Perplexity 计算方式。但是我发现计算出来的数值差距很大,ChatGLM2-6B 的效果远不及 Llama2-chinese,这与我实际使用下来的感受不一致。在 README 中看到咱们有对 ChatGLM 计算 Perplexity,想问下,应该如何来计算,或者是不是我的计算方式有问题?
f'[Round 1]\n问:请帮我总结下下面这段文字\n{{content}}\n答:{{sep_token}}{{summary}} {{eos_token}}'
prompt 格式,其中 content 对应的是总结前的文本,summary 对应的是总结后的文本。sep_token 是挑选的一个特殊的 token,用于后面做 mask 时,区分模型的输入与期望的输出(Labels)得到的结果:
代码实现
Beta Was this translation helpful? Give feedback.
All reactions