Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)
RFC 6979's deterministic DSA/ECDSA
signature scheme in Clojure — with support for a k'
parameter as a source of
extra entropy as described under "Variants" (section 3.6).
Available as:
[io.sixtant/rfc6979 "0.1.0"]
To generate k
values as described in rfc6979 3.2:
(require '[io.sixtant.rfc6979 :as sig])
;; E.g. generate k values to sign the message SHA256("sample")
(def message-bytes
(sig/hash-with-digest (sig/sha-256-digest) (.getBytes "sample")))
;; rfc6979 describes an algorithm for selecting a series of k values, since
;; different signature algorithms might have requirements which cause them to
;; reject certain k values until one is satisfactory.
;; So this generates an infinite series of k values.
(def k-values
(sig/generate-ks
{:curve-order (biginteger 0xFFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831)
:private-key (biginteger 0x6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4)
:data message-bytes
:hash-digest (sig/sha-256-digest)}))
(first k-values)
;=> 1243018074331921709198038856699476057063451281636813313174
;; The hex encoded k-value, which matches the test vector at:
;; https://tools.ietf.org/html/rfc6979#appendix-A.2.3
(.toString (biginteger (first k-values)) 16)
;=> "32b1b6d7d42a05cb449065727a84804fb1a3e34d8f261496"
To generate k
values with k'
(extra entropy) under the section 3.6 variant,
just add a :extra-entropy
parameter:
(sig/generate-ks
{:curve-order (biginteger 0xFFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831)
:private-key (biginteger 0x6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4)
:data (.getBytes "hashed-message")
:extra-entropy (.getBytes "seed")
:hash-digest (sig/sha-256-digest)})
Deterministic elliptic curve signatures:
(require '[io.sixtant.rfc6979 :as sig])
;; To compare against the test vector, we'll use the NIST P-192 curve
;; https://tools.ietf.org/html/rfc6979#appendix-A.2.3
(import '(org.bouncycastle.asn1.nist NISTNamedCurves))
;; Returns signature is the `r` and `s` pair of BigIntegers
(sig/ec-sign
{:data (sig/hash-with-digest
(sig/sha-256-digest)
(.getBytes "sample"))
:private-key (biginteger 0x6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4)
:hash-digest (sig/sha-256-digest)
:curve (NISTNamedCurves/getByName "P-192")})
;=> [1840100961263083710623367090499191253309337908038449679189 5023041631781708045212851554060961543112660311254607862661]
;; Again, to add k' entropy, use the :extra-entropy key
(sig/ec-sign
{:data (sig/hash-with-digest
(sig/sha-256-digest)
(.getBytes "sample"))
:private-key (biginteger 0x6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4)
:extra-entropy (.getBytes "seed")
:hash-digest (sig/sha-256-digest)
:curve (NISTNamedCurves/getByName "P-192")})
;=> [962550273645777332201477239297978599957983764722740361210 1215809841795932025900241180552496703469250337438771316994]
;; There are no test vectors for the section 3.6 variant in rfc6979, but the
;; result can be compared against python-ecdsa:
;;
;; >>> from ecdsa import SigningKey
;; >>> from ecdsa.curves import NIST192p
;; >>> import hashlib
;; >>> exp = int('0x6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4', 16)
;; >>> k = SigningKey.from_secret_exponent(exp, hashfunc=hashlib.sha256, curve=NIST192p)
;; >>> k.sign_deterministic(b"sample", extra_entropy=b"seed", sigencode=lambda r, s, o: [r, s])
;; Alternatively, using secp256k1 (Bitcoin's elliptic curve):
(import '(org.bouncycastle.asn1.sec SECNamedCurves))
(sig/ec-sign
{:data (sig/hash-with-digest
(sig/sha-256-digest)
(.getbytes "sample"))
:private-key (biginteger 0x6fab034934e4c0fc9ae67f5b5659a9d7d1fefd187ee09fd4)
:extra-entropy (.getbytes "seed")
:hash-digest (sig/sha-256-digest)
:curve (secnamedcurves/getbyname "secp256k1")})
;=> [69074179111879087176937429694430936543403435253273751714142900628115392158333 19728962829314034319645060574950784725465669219458722957246117220361954573201]
Verification:
(require '[io.sixtant.rfc6979 :as sig])
(import '(org.bouncycastle.asn1.nist NISTNamedCurves))
;; Verify against private key
(sig/ec-verify
{:data (sig/hash-with-digest
(sig/sha-256-digest)
(.getBytes "sample"))
:private-key (biginteger 0x6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4)
:curve (NISTNamedCurves/getByName "P-192")}
962550273645777332201477239297978599957983764722740361210
1215809841795932025900241180552496703469250337438771316994)
;=> true
;; Verify against public key (affine coordinates)
(let [curve (NISTNamedCurves/getByName "P-192")]
(sig/ec-verify
{:data (sig/hash-with-digest
(sig/sha-256-digest)
(.getBytes "sample"))
:public-key (public-key
curve
0xAC2C77F529F91689FEA0EA5EFEC7F210D8EEA0B9E047ED56
0x3BC723E57670BD4887EBC732C523063D0A7C957BC97C1C43)
:curve curve}
962550273645777332201477239297978599957983764722740361210
1215809841795932025900241180552496703469250337438771316994))
;=> true
To work with Bouncy Castle at a lower level for custom signature schemes, the
dsak-calculator
function creates a org.bouncycastle.crypto.signers.DSAKCalculator
which returns an arbitrary series of k
values, which is compatible with BC's
primitives.
E.g.
(require '[io.sixtant.rfc6979 :as sig])
(import '(org.bouncycastle.crypto.signers ECDSASigner))
(let [custom-signer (ECDSASigner. (sig/dsak-calculator (sig/generate-ks {...})))]
...)
Bouncy Castle exposes a HMACDSAKCalculator
class for deterministic generation of k
as described by RFC 6979, but without
support for the k'
(k prime) parameter described in section 3.6.
The python-ecdsa
library exposes a
nice, functional approach to ECDSA, including an easily accessible function for
deterministic generation of k, with support for k'
.
This library replicates that functionality for Clojure, such that the same k
values are generated in both languages. The resulting k
can then be used with
this library's sign
function, with Bouncy Castle's ECDSAs, or with a custom
deterministic signature algorithm.