Skip to content

Pelee: A Real-Time Object Detection System on Mobile Devices

License

Notifications You must be signed in to change notification settings

Robert-JunWang/Pelee

Repository files navigation

Pelee: A Real-Time Object Detection System on Mobile Devices

This repository contains the code for the following paper.

Pelee: A Real-Time Object Detection System on Mobile Devices (NeurIPS 2018)

The code is based on the SSD framework.

Citation

If you find this work useful in your research, please consider citing:


@incollection{NIPS2018_7466,
title = {Pelee: A Real-Time Object Detection System on Mobile Devices},
author = {Wang, Robert J and Li, Xiang and Ling, Charles X},
booktitle = {Advances in Neural Information Processing Systems 31},
editor = {S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett},
pages = {1967--1976},
year = {2018},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/7466-pelee-a-real-time-object-detection-system-on-mobile-devices.pdf}
}

Results on VOC 2007

The table below shows the results on PASCAL VOC 2007 test.

Method mAP (%) FPS (Intel i7) FPS (NVIDIA TX2) FPS (iPhone 8) # parameters
YOLOv2-288 69.0 1.0 - - 58.0M
DSOD300_smallest 73.6 1.3 - - 5.9M
Tiny-YOLOv2 57.1 2.4 - 23.8 15.9M
SSD MobileNet 68.0 6.1 82 22.8 5.8M
Pelee 70.9 6.7 125 23.6 5.4M
Method 07 12 07 12 coco
SSD300 77.2 81.2
SSD MobileNet 68 72.7
Pelee 70.9 76.4

Results on COCO

The table below shows the results on COCO test-dev2015.

Method mAP@[0.5:0.95] [email protected] [email protected] FPS (NVIDIA TX2) # parameters
SSD300 25.1 43.1 25.8 - 34.30 M
YOLOv2-416 21.6 44.0 19.2 32.2 67.43 M
YOLOv3-320 - 51.5 - 21.5 67.43 M
TinyYOLOv3-416 - 33.1 - 105 12.3 M
SSD MobileNet-300 18.8 - - 80 6.80 M
SSDLite MobileNet V2-320 22 - - 61 6.80 M
Pelee-304 22.4 38.3 22.9 120 5.98 M

Preparation

  1. Install SSD (https://github.com/weiliu89/caffe/tree/ssd) following the instructions there, including: (1) Install SSD caffe; (2) Download PASCAL VOC 2007 and 2012 datasets; and (3) Create LMDB file. Make sure you can run it without any errors.

  2. Download the pretrained PeleeNet model. By default, we assume the model is stored in $CAFFE_ROOT/models/

  3. Clone this repository and create a soft link to $CAFFE_ROOT/examples

git clone https://github.com/Robert-JunWang/Pelee.git
ln -sf `pwd`/Pelee $CAFFE_ROOT/examples/pelee

Training & Testing

  • Train a Pelee model on VOC 07 12:

    cd $CAFFE_ROOT
    python examples/pelee/train_voc.py
  • Evaluate the model:

    cd $CAFFE_ROOT
    python examples/pelee/eval_voc.py
    
    

Models

About

Pelee: A Real-Time Object Detection System on Mobile Devices

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published