Official code implementation for WSDM 23 paper Graph Sequential Neural ODE Process for Link Prediction on Dynamic and Sparse Graphs.
Paper
Proof and supplementary file
Slides
Poster
Source code: code
- python 3.8
- ubuntu 20.04
- RTX2080
- Anaconda
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
conda install -c dglteam dgl-cuda11.3
conda install pandas numpy pyyaml tqdm pybind11 psutil scikit-learn
python setup.py build_ext --inplace
python setup.py install
pip install torch-scatter torchdiffeq
python train_np.py --data WIKI_0.3 --config config/DySAT.yml --base_model origin --eval_neg_samples 50
python train_np.py --data WIKI_0.3 --config config/DySAT.yml --base_model snp --ode --eval_neg_samples 50
python train_np.py --data WIKI_0.3 --config config/TGN.yml --base_model origin --eval_neg_samples 50
python train_np.py --data WIKI_0.3 --config config/TGN.yml --base_model snp --ode --eval_neg_samples 50
python train_np.py --data WIKI_0.3 --config config/TGAT.yml --base_model origin --eval_neg_samples 50
python train_np.py --data WIKI_0.3 --config config/TGAT.yml --base_model snp --ode --eval_neg_samples 50
python train_np.py --data WIKI_0.3 --config config/APAN.yml --base_model origin --eval_neg_samples 50
python train_np.py --data WIKI_0.3 --config config/APAN.yml --base_model snp --ode --eval_neg_samples 50
python train_np.py --data WIKI_0.3 --config config/JODIE.yml --base_model origin --eval_neg_samples 50
python train_np.py --data WIKI_0.3 --config config/JODIE.yml --base_model snp --ode --eval_neg_samples 50
@inproceedings{luo2022gsnop,
author = {Luo, Linhao and Haffari, Gholamreza and Pan, Shirui},
title = {Graph Sequential Neural ODE Process for Link Prediction on Dynamic and Sparse Graphs},
year = {2023},
isbn = {9781450394079},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3539597.3570465},
doi = {10.1145/3539597.3570465},
booktitle = {Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining},
pages = {778–786},
numpages = {9},
keywords = {neural process, link prediction, graph neural networks, dynamic graphs},
location = {Singapore, Singapore},
series = {WSDM '23}
}
This repo is mainly based on amazon-science/tgl. We thank the authors for their great works.