Skip to content

PASSL包含 SimCLR,MoCo v1/v2,BYOL,CLIP,PixPro,simsiam, SwAV, BEiT,MAE 等图像自监督算法以及 Vision Transformer,DEiT,Swin Transformer,CvT,T2T-ViT,MLP-Mixer,XCiT,ConvNeXt,PVTv2 等基础视觉算法

License

Notifications You must be signed in to change notification settings

PaddlePaddle/PASSL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

97 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PASSL

Introduction

PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to accelerate research cycle in self-supervised learning: from designing a new self-supervised task to evaluating the learned representations.

  • Reproducible implementation of SOTA in Self-Supervision: Existing SOTA in Self-Supervision are implemented - SimCLR, MoCo(v1),MoCo(v2), MoCo-BYOL, CLIP. BYOL is coming soon. Also supports supervised trainings.
  • Modular: Easy to build new tasks and reuse the existing components from other tasks (Trainer, models and heads, data transforms, etc.).

Installation

Implemented Models

Benchmark Linear Image Classification on ImageNet-1K

epochs official results passl results Backbone Model
MoCo 200 60.6 60.64 ResNet-50 download
SimCLR 100 64.5 65.3 ResNet-50 download
MoCo v2 200 67.7 67.72 ResNet-50 download
MoCo-BYOL 300 71.56 72.10 ResNet-50 download
BYOL 300 72.50 71.62 ResNet-50 download
PixPro 100 55.1(fp16) 57.2(fp32) ResNet-50 download

Getting Started

Please see GETTING_STARTED.md for the basic usage of PASSL.

Tutorials

About

PASSL包含 SimCLR,MoCo v1/v2,BYOL,CLIP,PixPro,simsiam, SwAV, BEiT,MAE 等图像自监督算法以及 Vision Transformer,DEiT,Swin Transformer,CvT,T2T-ViT,MLP-Mixer,XCiT,ConvNeXt,PVTv2 等基础视觉算法

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published