This folder contains the implementation of the Vision-RWKV (VRWKV) for image classification.
- Clone this repo:
git clone https://github.com/OpenGVLab/Vision-RWKV.git
cd Vision-RWKV
- Create a conda virtual environment and activate it:
conda create -n vrwkv python=3.10 -y
conda activate vrwkv
- Install
CUDA>=10.2
withcudnn>=7
following the official installation instructions - Install
PyTorch>=1.10.0
andtorchvision>=0.9.0
withCUDA>=10.2
:
For examples, to install torch==1.12.1 with CUDA==11.3:
pip install torch==1.12.1 cu113 torchvision==0.12.0 cu113 -f https://download.pytorch.org/whl/torch_stable.html
- Install
timm==0.6.12
andmmcv-full==1.7.0
:
pip install -U openmim
mim install mmcv-full==1.7.0
pip install timm==0.6.12
- Install other requirements:
pip install opencv-python termcolor yacs pyyaml scipy
We use standard ImageNet dataset, you can download it from http://image-net.org/. We provide the following two ways to load data:
-
For standard folder dataset, move validation images to labeled sub-folders. The file structure should look like:
$ tree data imagenet ├── train │ ├── class1 │ │ ├── img1.jpeg │ │ ├── img2.jpeg │ │ └── ... │ ├── class2 │ │ ├── img3.jpeg │ │ └── ... │ └── ... └── val ├── class1 │ ├── img4.jpeg │ ├── img5.jpeg │ └── ... ├── class2 │ ├── img6.jpeg │ └── ... └── ...
-
To boost the slow speed when reading images from massive small files, we also support zipped ImageNet, which includes four files:
train.zip
,val.zip
: which store the zipped folder for train and validate splits.train.txt
,val.txt
: which store the relative path in the corresponding zip file and ground truth label. Make sure the data folder looks like this:
$ tree data data └── ImageNet-Zip ├── train_map.txt ├── train.zip ├── val_map.txt └── val.zip $ head -n 5 meta_data/val.txt ILSVRC2012_val_00000001.JPEG 65 ILSVRC2012_val_00000002.JPEG 970 ILSVRC2012_val_00000003.JPEG 230 ILSVRC2012_val_00000004.JPEG 809 ILSVRC2012_val_00000005.JPEG 516 $ head -n 5 meta_data/train.txt n01440764/n01440764_10026.JPEG 0 n01440764/n01440764_10027.JPEG 0 n01440764/n01440764_10029.JPEG 0 n01440764/n01440764_10040.JPEG 0 n01440764/n01440764_10042.JPEG 0
-
For ImageNet-22K dataset, make a folder named
fall11_whole
and move all images to labeled sub-folders in this folder. Then download the train-val split file (ILSVRC2011fall_whole_map_train.txt & ILSVRC2011fall_whole_map_val.txt) , and put them in the parent directory offall11_whole
. The file structure should look like:$ tree imagenet22k/ imagenet22k/ └── fall11_whole ├── n00004475 ├── n00005787 ├── n00006024 ├── n00006484 └── ...
To evaluate a pretrained VRWKV
on ImageNet-1K val, run:
sh dist_test_in1k.sh <config-file> <checkpoint> <gpu-num>
For example, to evaluate the VRWKV-L
with a single GPU:
sh dist_test_in1k.sh configs/vrwkv_l_22kto1k_384.yaml ./pretrained/vrwkv_l_22kto1k_384.pth 1
To finetune an VRWKV
on ImageNet-1K, run:
sh dist_train_in1k.sh <config-file> <gpu-num>
For example, to finetune a pretrained VRWKV-L
on ImageNet-1K with 8 GPU on a single node for 20 epochs, run:
sh dist_train_in1k.sh configs/vrwkv_l_22kto1k_384.yaml 8
For example, to finetune VRWKV-L
on ImageNet-1K with 16 GPUs on 2 nodes for 20 epochs (total batch size 1024), run:
GPUS=16 sh slurm_train_in1k.sh <partition> <job-name> configs/vrwkv_l_22kto1k_384.yaml