The statConfR
package provides functions to fit static models of
decision-making and confidence derived from signal detection theory for
binary discrimination tasks, meta-d′/d′, the most prominent measure of
metacognitive efficiency, meta-I, an information-theoretic measures of
metacognitive sensitivity, as well as
Fitting models of confidence can be used to test the assumptions underlying meta-d′/d′. Several static models of decision-making and confidence include a metacognition parameter that may serve as an alternative when the assumptions of meta-d′/d′ assuming the corresponding model provides a better fit to the data. The following models are included:
- signal detection rating model (Green & Swets, 1966),
- Gaussian noise model (Maniscalco & Lau, 2016),
- weighted evidence and visibility model (Rausch et al., 2018),
- post-decisional accumulation model (Rausch et al., 2018),
- independent Gaussian model (Rausch & Zehetleitner, 2017),
- independent truncated Gaussian model (the model underlying the meta-d′/d′ method, see Rausch et al., 2023),
- lognormal noise model (Shekhar & Rahnev, 2021), and
- lognormal weighted evidence and visibility model (Shekhar & Rahnev, 2023).
The models included in the statConfR package are all based on signal
detection theory (Green & Swets, 1966). It is assumed that participants
select a binary discrimination response
- sensitivity parameters
$d_1, ..., d_K$ ($K$ : number of difficulty levels), - decision criterion
$c$ , - confidence criterion
$\theta_{-1,1}, ..., \theta_{-1,L-1}, \theta_{1,1}, ,...,\theta_{1,L-1}$ ($L$ : number of confidence categories available for confidence ratings).
According to SDT, the same sample of sensory evidence is used to
generate response and confidence, i.e.,
Conceptually, the Gaussian noise model reflects the idea that confidence
is informed by the same sensory evidence as the task decision, but
confidence is affected by additive Gaussian noise. According to GN,
Conceptually, the WEV model reflects the idea that the observer combines
evidence about decision-relevant features of the stimulus with the
strength of evidence about choice-irrelevant features to generate
confidence. For this purpose, WEV assumes that
PDA represents the idea of on-going information accumulation after the
discrimination choice. The parameter
According to IG, the information used for confidence judgments is
generated independently from the sensory evidence used for the task
decision. For this purpose, it is assumed that
Conceptually, the two ITG models just as IG are based on the idea that
the information used for confidence judgments is generated independently
from the sensory evidence used for the task decision. However, in
contrast to IG, the two ITG models also reflect a form of confirmation
bias in so far as it is not possible to collect information that
contradicts the original decision. According to the version of ITG
consistent with the HMetad-method (Fleming, 2017),
According to the version of the ITG consistent with the original meta-d’
method (Maniscalco & Lau, 2012, 2014),
According to logN, the same sample of sensory evidence is used to
generate response and confidence, i.e.,
The logWEV model is a combination of logN and WEV proposed by .
Conceptually, logWEV assumes that the observer combines evidence about
decision-relevant features of the stimulus with the strength of evidence
about choice-irrelevant features. The model also assumes that noise
affecting the confidence decision variable is lognormal. According to
logWEV, the confidence decision variable is
The conceptual idea of meta-d′ is to quantify metacognition in terms of sensitivity in a hypothetical signal detection rating model describing the primary task, under the assumption that participants had perfect access to the sensory evidence and were perfectly consistent in placing their confidence criteria (Maniscalco & Lau, 2012, 2014). Using a signal detection model describing the primary task to quantify metacognition allows a direct comparison between metacognitive accuracy and discrimination performance because both are measured on the same scale. Meta-d′ can be compared against the estimate of the distance between the two stimulus distributions estimated from discrimination responses, which is referred to as d′: If meta-d′ equals d′, it means that metacognitive accuracy is exactly as good as expected from discrimination performance. If meta-d′ is lower than d′, it means that metacognitive accuracy is not optimal. It can be shown that the implicit model of confidence underlying the meta-d’/d’ method is identical to different versions of the independent truncated Gaussian model (Rausch et al., 2023), depending on whether the original model specification by Maniscalco and Lau (2012) or alternatively the specification by Fleming (2017) is used. We strongly recommend to test whether the independent truncated Gaussian models are adequate descriptions of the data before quantifying metacognitive efficiency with meta-d′/d′.
Dayan (2023) proposed several measures of metacognition based on quantities of information theory.
- Meta-I is a measure of metacognitive sensitivity defined as the mutual information between the confidence and accuracy and is calculated as the transmitted information minus the minimal information given the accuracy:
This is equivalent to Dayan’s formulation where meta-I is the information that confidences transmit about the correctness of a response:
- Meta-
$I_{1}^{r}$ is meta-I normalized by the value of meta-I expected assuming a signal detection model (Green & Swets, 1966) with Gaussian noise, based on calculating the sensitivity index d’:
- Meta-
$I_{2}^{r}$ is meta-I normalized by its theoretical upper bound, which is the information entropy of accuracy,$H(Y = \hat{Y})$ :
Notably, Dayan (2023) pointed out that a liberal or conservative use of the confidence levels will affected the mutual information and thus all information-theoretic measures of metacognition.
In addition to Dayan’s measures, Meyen et al. (submitted) suggested an additional measure that normalizes the Meta-I by the range of possible values it can take. This required deriving lower and upper bounds of the transmitted information given a participant’s accuracy.
As these measures are prone to estimation bias, the package offers a simple bias reduction mechanism in which the observed frequencies of stimulus-response combinations are taken as the underyling probability distribution. From this, Monte-Carlo simulations are conducted to estimate and subtract the bias in these measures. Note that there provably is no way to completely remove this bias.
The latest released version of the package is available on CRAN via
install.packages("statConfR")
The easiest way to install the development version is using devtools
and install from GitHub:
devtools::install_github("ManuelRausch/StatConfR")
The package includes a demo data set from a masked orientation discrimination task with confidence judgments (Hellmann et al., 2023, Exp. 1).
library(statConfR)
data("MaskOri")
head(MaskOri)
## participant stimulus response correct rating diffCond trialNo
## 1 1 0 0 1 0 8.3 1
## 2 1 90 0 0 4 133.3 2
## 3 1 0 0 1 0 33.3 3
## 4 1 90 0 0 0 16.7 4
## 5 1 0 0 1 3 133.3 5
## 6 1 0 0 1 0 16.7 6
The function fitConfModels
allows the user to fit several confidence
models separately to the data of each participant. The data should be
provided via the argument .data
in the form of a data.frame object
with the following variables in separate columns:
- stimulus (factor with 2 levels): The property of the stimulus which defines which response is correct
- diffCond (factor): The experimental manipulation that is expected to affect discrimination sensitivity
- correct (0-1): Indicating whether the choice was correct (1) or incorrect(0).
- rating (factor): A discrete variable encoding the decision confidence (high: very confident; low: less confident)
- participant (integer): giving the subject ID. The argument
model
is used to specify which model should be fitted, with ‘WEV’, ‘SDT’, ‘GN’, ‘PDA’, ‘IG’, ‘ITGc’, ‘ITGcm’, ‘logN’, and ‘logWEV’ as available options. If model=“all” (default), all implemented models will be fit, although this may take a while.
Setting the optional argument .parallel=TRUE
parallizes model fitting
over all but 1 available core. Note that the fitting procedure takes may
take a considerable amount of time, especially when there are multiple
models, several difficulty conditions, and/or several confidence
categories. For example, if there are five difficulty conditions and
five confidence levels, fitting the WEV model to one single participant
may take 20-30 minutes on a 2.8GHz CPU. We recommend parallelization to
keep the required time tolerable.
fitted_pars <- fitConfModels(MaskOri, models=c("ITGcm", "WEV"), .parallel = TRUE)
The output is then a data frame with one row for each combination of participant and model and separate columns for each estimated parameter as well as for different measures for goodness-of-fit (negative log-likelihood, BIC, AIC and AICyc). These may be used for statistical model comparisons.
head(fitted_pars)
## model participant negLogLik N k BIC AICc AIC d_1
## 1 ITGcm 1 1046.6310 540 15 2187.636 2124.064 2123.262 5.454675e-10
## 2 WEV 1 984.7821 540 16 2070.229 2002.482 2001.564 7.878135e-02
## 3 ITGcm 2 887.1734 540 15 1868.720 1805.148 1804.347 3.829963e-02
## 4 WEV 2 854.9635 540 16 1810.592 1742.845 1741.927 1.694767e-01
## 5 ITGcm 3 729.1776 540 15 1552.729 1489.157 1488.355 2.268368e-01
## 6 WEV 3 720.8812 540 16 1542.428 1474.680 1473.762 4.514495e-01
## d_2 d_3 d_4 d_5 c theta_minus.4 theta_minus.3
## 1 0.2202360 0.3548801 2.293571 3.425364 -0.08019056 -1.593619 -0.9176832
## 2 0.2627565 0.4221678 2.522239 2.990242 -0.10156005 -2.307768 -1.0284769
## 3 0.4414296 1.0067772 3.774056 4.826061 -0.32984521 -1.603116 -1.0359237
## 4 0.5410758 1.2167297 3.688688 4.533279 -0.38629823 -2.162288 -1.1900373
## 5 0.6150607 1.7070516 5.000353 6.558447 -0.44716359 -1.605777 -1.3117477
## 6 0.9393539 1.7224474 4.768763 6.022956 -0.48838134 -1.833939 -1.4803745
## theta_minus.2 theta_minus.1 theta_plus.1 theta_plus.2 theta_plus.3
## 1 -0.5825042 -0.4093600 0.1129810 0.34925834 1.0131169
## 2 -0.2504396 0.2380873 -0.7998558 -0.06546803 1.3010215
## 3 -0.6044161 -0.4373389 -0.1826681 0.20172223 0.9977414
## 4 -0.1296185 0.6220593 -0.9230581 0.13155602 1.5182388
## 5 -0.8092707 -0.5866515 -0.2900164 0.05975546 0.9844860
## 6 -0.7322736 -0.1486786 -0.4187309 0.18464840 1.2401476
## theta_plus.4 m sigma w wAIC wAICc
## 1 1.867748 1.143606 NA NA 3.746813e-27 3.971060e-27
## 2 2.705993 NA 1.2098031 0.8788714 1.000000e 00 1.000000e 00
## 3 1.605164 1.036321 NA NA 2.790743e-14 2.957770e-14
## 4 2.388335 NA 1.1305801 0.5395001 1.000000e 00 1.000000e 00
## 5 1.398138 1.076547 NA NA 6.775184e-04 7.180389e-04
## 6 1.677248 NA 0.6994795 0.2729548 9.993225e-01 9.992820e-01
## wBIC
## 1 3.203055e-26
## 2 1.000000e 00
## 3 2.385735e-13
## 4 1.000000e 00
## 5 5.762461e-03
## 6 9.942375e-01
It can be seen that the independent truncated Gaussian model is consistently outperformed by the weighted evidence and visibility model, which is why we would not recommend using meta-d′/d′ for this specific task.
After obtaining model fits, it is strongly recommended to visualize the
prediction implied by the best fitting sets of parameters and to compare
the prediction with the actual data (Palminteri et al., 2017). The best
way to visualize the data is highly specific to the data set and
research question, which is why statConfR
does not come with its own
visualization tools. This being said, here is an example for how a
visualization of model fit could look like:
library(tidyverse)
AggregatedData <- MaskOri %>%
mutate(ratings = as.numeric(rating), diffCond = as.numeric(diffCond)) %>%
group_by(participant, diffCond, correct ) %>%
dplyr::summarise(ratings=mean(ratings,na.rm=T)) %>%
Rmisc::summarySEwithin(measurevar = "ratings",
withinvars = c("diffCond", "correct"),
idvar = "participant",
na.rm = TRUE, .drop = TRUE) %>%
mutate(diffCond = as.numeric(diffCond))
AggregatedPrediction <-
rbind(fitted_pars %>%
filter(model=="ITGcm") %>%
group_by(participant) %>%
simConf(model="ITGcm") %>%
mutate(model="ITGcm"),
fitted_pars %>%
filter(model=="WEV") %>%
group_by(participant) %>%
simConf(model="WEV") %>%
mutate(model="WEV")) %>%
mutate(ratings = as.numeric(rating) ) %>%
group_by(participant, diffCond, correct, model ) %>%
dplyr::summarise(ratings=mean(ratings,na.rm=T)) %>%
Rmisc::summarySEwithin(measurevar = "ratings",
withinvars = c("diffCond", "correct", "model"),
idvar = "participant",
na.rm = TRUE, .drop = TRUE) %>%
mutate(diffCond = as.numeric(diffCond))
PlotMeans <-
ggplot(AggregatedPrediction,
aes(x = diffCond, y = ratings, color = correct)) facet_grid(~ model)
ylim(c(1,5))
geom_line() ylab("confidence rating") xlab("difficulty condition")
scale_color_manual(values = c("darkorange", "navy"),
labels = c("Error", "Correct response"), name = "model prediction")
geom_errorbar(data = AggregatedData,
aes(ymin = ratings-se, ymax = ratings se), color="black")
geom_point(data = AggregatedData, aes(shape=correct), color="black")
scale_shape_manual(values = c(15, 16),
labels = c("Error", "Correct response"), name = "observed data")
theme_bw()
PlotMeans
Assuming that the independent truncated Gaussian model provides a decent
account of the data (notably, this is not the case though in the demo
data set), the function fitMetaDprime
can be used to estimate
meta-d′/d′ independently for each subject. The arguments .data
and
.parallel=TRUE
just in the same way the arguments of fitConfModels
.
The argument model
offers the user the choice between two model
specifications, either “ML” to use the original model specification used
by Maniscalco and Lau (2012, 2014) or “F” to use the model specification
by Fleming (2017)’s Hmetad method.
MetaDs <- fitMetaDprime(data = MaskOri, model="ML", .parallel = TRUE)
Information theoretic measures of metacognition can be obtained by the
function estimateMetaI
. It expects the same kind of data.frame as
fitMetaDprime
and returns separate estimates of meta-I,
Meta-
metaIMeasures <- estimateMetaI(data = MaskOri, bias_reduction = TRUE)
metaIMeasures
## participant meta_I meta_Ir1 meta_Ir1_acc meta_Ir2 RMI
## 1 1 0.07321993 1.2965048 1.279431 0.08308258 0.2602997
## 2 2 0.12017969 1.2643420 1.338810 0.15333405 0.3789839
## 3 3 0.13323835 1.1521354 1.185983 0.19854232 0.4173728
## 4 4 0.10294123 3.2014395 3.218389 0.10963651 0.4518516
## 5 5 0.19370869 2.6655771 2.663206 0.23153151 0.6386547
## 6 6 0.14458691 1.5880419 1.595889 0.18599614 0.4545245
## 7 7 0.16353171 6.0342450 4.239500 0.17669060 0.6700903
## 8 8 0.20127454 4.8543449 4.543057 0.22100846 0.7775487
## 9 9 0.15762723 3.7751311 3.922772 0.17130852 0.6310992
## 10 10 0.08548289 1.2342125 1.236070 0.10089452 0.2857985
## 11 11 0.15120480 2.1831523 2.201838 0.17846536 0.5055293
## 12 12 0.15398686 1.8539830 2.128675 0.18405375 0.5076924
## 13 13 0.24504875 3.9008194 4.127958 0.28024999 0.8583007
## 14 14 0.25312099 3.0451233 4.142340 0.28948181 0.8865743
## 15 15 0.24287431 2.0694695 3.180866 0.29317831 0.7931983
## 16 16 0.24406679 2.4295440 2.467404 0.32979126 0.7590418
## 17 17 0.20351257 3.0952966 2.428328 0.25460548 0.6478404
## 18 18 0.21831325 1.9820864 1.927816 0.31225911 0.6793342
## 19 19 0.18662722 2.4948651 2.576716 0.22095596 0.6216951
## 20 20 0.16072884 1.4311567 1.491590 0.23118740 0.5004669
## 21 21 0.17929842 1.7230112 1.722922 0.24964661 0.5569786
## 22 22 0.08469027 3.3927291 2.981495 0.08892645 0.4073241
## 23 23 0.13889552 2.0783438 2.073700 0.16246123 0.4697393
## 24 24 0.11071507 2.5682313 2.514017 0.12105994 0.4336865
## 25 25 0.19107690 3.5795384 3.125612 0.21971040 0.6630132
## 26 26 0.20523872 2.4329273 2.499679 0.25484256 0.6562130
## 27 27 0.19903642 2.3658057 2.196374 0.25498369 0.6266456
## 28 28 0.18985624 1.6299340 1.904236 0.25778251 0.5901968
## 29 29 0.18688317 1.5189468 1.793784 0.26157314 0.5806242
## 30 30 0.15572509 1.2591748 1.614709 0.20747139 0.4851911
## 31 31 0.20945871 2.3265202 2.345804 0.26724276 0.6605233
## 32 32 0.22707129 2.2955448 2.312489 0.30536702 0.7065530
## 33 33 0.24753133 2.7620946 2.808619 0.31581860 0.7805844
## 34 34 0.22404324 3.1686844 3.204142 0.26525440 0.7463359
## 35 35 0.23754656 3.5957191 2.747190 0.29606224 0.7578100
## 36 36 0.17642998 1.7302617 1.714138 0.24072825 0.5482769
## 37 37 0.14156582 2.4534916 2.088377 0.16657938 0.4750719
## 38 38 0.15448011 1.7353399 1.737785 0.19709703 0.4871495
## 39 39 0.18400730 2.1875325 2.395932 0.22363310 0.5974378
## 40 40 0.19287437 2.2419500 2.326485 0.24038579 0.6152988
## 41 41 0.18188788 1.8015000 1.825449 0.24232788 0.5667062
## 42 42 0.15087769 1.2925140 1.293863 0.23524978 0.4783313
## 43 43 0.10257649 1.4506690 1.253856 0.12340998 0.3360313
## 44 44 0.13728801 2.3382274 2.425795 0.15578058 0.4880642
## 45 45 0.09406749 0.9372701 1.233435 0.11317279 0.3081566
## 46 46 0.16059915 2.1801414 2.249427 0.19134191 0.5312686
## 47 47 0.21444049 2.8639684 2.421343 0.26827691 0.6826272
## 48 48 0.16831526 1.6266209 1.651161 0.23196177 0.5228600
## meta_I_debiased meta_Ir1_debiased meta_Ir1_acc_debiased meta_Ir2_debiased
## 1 0.07143332 1.242269 1.113447 0.08070847
## 2 0.12165138 1.316959 1.349131 0.15994592
## 3 0.14237541 1.240712 1.275695 0.21298708
## 4 0.10632072 3.545844 3.526880 0.11135708
## 5 0.19410095 2.748905 2.748978 0.23403446
## 6 0.14755009 1.626839 1.642327 0.18886634
## 7 0.16515382 6.413148 4.000167 0.17953472
## 8 0.19735484 4.891241 4.096193 0.21985197
## 9 0.15844954 3.929522 3.717900 0.17536863
## 10 0.08866888 1.301327 1.267539 0.10562408
## 11 0.15902723 2.306335 2.302278 0.18838923
## 12 0.16379683 2.005939 2.300690 0.19559299
## 13 0.23870874 3.865557 3.747070 0.27752569
## 14 0.24911332 3.040417 3.929051 0.28853138
## 15 0.24504020 3.355438 3.216374 0.29549802
## 16 0.23831061 2.396187 2.383277 0.32930535
## 17 0.20460224 3.122815 2.425570 0.25858301
## 18 0.22357854 2.042949 1.986306 0.32162312
## 19 0.17871393 2.395686 2.269039 0.21635483
## 20 0.16285480 1.472120 1.507678 0.23808289
## 21 0.18129701 1.754517 1.732706 0.25617830
## 22 0.08819352 3.779536 2.698693 0.09344345
## 23 0.14295648 2.205824 2.069157 0.16881113
## 24 0.11277990 2.734004 2.345870 0.12545750
## 25 0.18322202 3.488315 2.740213 0.21435278
## 26 0.20940203 2.545531 2.551016 0.26310407
## 27 0.20248416 2.460904 2.248661 0.26173833
## 28 0.19287266 859.593219 1.936825 0.26398919
## 29 0.19169634 1.566125 1.840799 0.26767916
## 30 0.14896914 256.124632 1.520709 0.20235636
## 31 0.21421541 2.423655 2.413600 0.27569124
## 32 0.22637957 2.313987 2.347091 0.30694480
## 33 0.24696790 2.803187 2.848258 0.31689087
## 34 0.22630715 3.262935 3.188349 0.26991936
## 35 0.23903078 3.669731 2.733186 0.30080826
## 36 0.18310519 1.838313 1.802865 0.25397222
## 37 0.13979154 2.453495 1.942786 0.16827179
## 38 0.15717348 1.769511 1.723277 0.20294234
## 39 0.18096604 2.162223 2.218874 0.22416657
## 40 0.19902465 2.329532 2.420034 0.24546943
## 41 0.18838966 1.877608 1.910744 0.25025229
## 42 0.15994868 1.373623 1.384407 0.24923307
## 43 0.11201731 1.582801 1.385050 0.13568421
## 44 0.13803519 2.415580 2.370112 0.15926577
## 45 0.10283282 1.044179 1.353228 0.12523397
## 46 0.16330994 2.268042 2.268350 0.19745911
## 47 0.21404724 2.616412 2.354386 0.27034325
## 48 0.17291346 1.683992 1.696831 0.23998751
## RMI_debiased
## 1 0.2391174
## 2 0.3885466
## 3 0.4474200
## 4 0.4750137
## 5 0.6503273
## 6 0.4621693
## 7 0.6586423
## 8 0.7363613
## 9 0.6204711
## 10 0.2936420
## 11 0.5303061
## 12 0.5449184
## 13 0.8191188
## 14 0.8621133
## 15 0.7983847
## 16 0.7486902
## 17 0.6514216
## 18 0.6986443
## 19 0.5805878
## 20 0.5099348
## 21 0.5661697
## 22 0.3965086
## 23 0.4806234
## 24 0.4305208
## 25 0.6115879
## 26 0.6751275
## 27 0.6424798
## 28 0.6031409
## 29 0.5964984
## 30 0.4672782
## 31 0.6760934
## 32 0.7091724
## 33 0.7805580
## 34 0.7548796
## 35 0.7654918
## 36 0.5777304
## 37 0.4640221
## 38 0.4966019
## 39 0.5833353
## 40 0.6359833
## 41 0.5885114
## 42 0.5070313
## 43 0.3685109
## 44 0.4895104
## 45 0.3414995
## 46 0.5374661
## 47 0.6782633
## 48 0.5405230
For the impatient and for testing purposes, bias_reduction can be turned off to increase computation speed:
metaIMeasures <- estimateMetaI(data = MaskOri, bias_reduction = FALSE)
After installation, the documentation of each function of of statConfR
can be accessed by typing ?functionname into the console.
The package is under active development. We are planning to implement new models of decision confidence when they are published. Please feel free to contact us to suggest new models to implement in in the package, or to volunteer adding additional models.
Only recommended for users with experience in cognitive modelling! For readers who want to use our open code to implement models of confidence themselves, the following steps need to be taken:
- Derive the likelihood of a binary response (
$R=-1, 1$ ) and a specific level of confidence ($C=1,...K$ ) according to the custom model and a set of parameters, given the binary stimulus ($S=-1, 1$ ), i.e.$P(R, C | S)$ . - Use one of the files named ‘int_llmodel.R’ from the package sources and adapt the likelihood function according to your model. According to our convention, name the new file a ‘int_llyourmodelname.R’. Note that all parameters are fitted on the reals, i.e. positive parameters should be transformed outside the log-likelihood function (e.g. using the logarithm) and back-transformed within the log-likelihood function (e.g. using the exponential).
- Use one of the files ‘int_fitmodel.R’ from the package sources and
adapt the fitting function to reflect the new model.
- The initial grid used during the grid search should include a plausible range of all parameters of your model.
- If applicable, the parameters of the initial grid needs be transformed so the parameter vector for optimization is real-valued).
- The optimization routine should call the new log-likelihood function.
- If applicable, the parameter vector i obtained during optimization
needs to back-transformation for the the output object
res
. - Name the new file according to the convention ‘int_fityourmodelname.R’.
- Add your model and fitting-functions to the high-level functions
fitConf
andfitConfModels
. - Add a simulation function in the file ‘int_simulateConf.R’ which uses the same structure as the other functions but adapt the likelihood of the responses.
For comments, bug reports, and feature suggestions please feel free to write to either [email protected] or [email protected] or submit an issue.
- Dayan, P. (2023). Metacognitive Information Theory. Open Mind, 7, 392–411. https://doi.org/10.1162/opmi_a_00091
- Fleming, S. M. (2017). HMeta-d: Hierarchical Bayesian estimation of metacognitive efficiency from confidence ratings. Neuroscience of Consciousness, 1, 1–14. https://doi.org/10.1093/nc/nix007
- Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. Wiley.
- Hellmann, S., Zehetleitner, M., & Rausch, M. (2023). Simultaneous modeling of choice, confidence, and response time in visual perception. Psychological Review, 130(6), 1521–1543. https://doi.org/10.1037/rev0000411
- Maniscalco, B., & Lau, H. (2012). A signal detection theoretic method for estimating metacognitive sensitivity from confidence ratings. Consciousness and Cognition, 21(1), 422–430. https://doi.org/10.1016/j.concog.2011.09.021
- Maniscalco, B., & Lau, H. (2016). The signal processing architecture underlying subjective reports of sensory awareness. Neuroscience of Consciousness, 1, 1–17. https://doi.org/10.1093/nc/niw002
- Maniscalco, B., & Lau, H. C. (2014). Signal Detection Theory Analysis of Type 1 and Type 2 Data: Meta-d, Response- Specific Meta-d, and the Unequal Variance SDT Model. In S. M. Fleming & C. D. Frith (Eds.), The Cognitive Neuroscience of Metacognition (pp. 25–66). Springer. https://doi.org/10.1007/978-3-642-45190-4_3
- Palminteri, S., Wyart, V., & Koechlin, E. (2017). The importance of falsification in computational cognitive modeling. Trends in Cognitive Sciences, 21(6), 425–433. https://doi.org/10.1016/j.tics.2017.03.011
- Rausch, M., Hellmann, S., & Zehetleitner, M. (2018). Confidence in masked orientation judgments is informed by both evidence and visibility. Attention, Perception, and Psychophysics, 80(1), 134–154. https://doi.org/10.3758/s13414-017-1431-5
- Rausch, M., & Zehetleitner, M. (2017). Should metacognition be measured by logistic regression? Consciousness and Cognition, 49, 291–312. https://doi.org/10.1016/j.concog.2017.02.007
- Shekhar, M., & Rahnev, D. (2021). The Nature of Metacognitive Inefficiency in Perceptual Decision Making. Psychological Review, 128(1), 45–70. https://doi.org/10.1037/rev0000249
- Shekhar, M., & Rahnev, D. (2024). How Do Humans Give Confidence? A Comprehensive Comparison of Process Models of Perceptual Metacognition. Journal of Experimental Psychology: General, 153(3), 656–688. https://doi.org/10.1037/xge0001524