-
Notifications
You must be signed in to change notification settings - Fork 0
/
avm_arbit.psl
345 lines (292 loc) · 14.4 KB
/
avm_arbit.psl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
vunit i_avm_arbit(avm_arbit(synthesis))
{
-- Additional signals used during formal verification
signal f_count : integer range 0 to 3 := 0;
-- set all declarations to run on clk_i
default clock is rising_edge(clk_i);
-----------------------------------------------
-- Keep track of burst write and read on slave
-----------------------------------------------
signal f_s0_wr_burstcount : integer; -- Remaining amount of write data
signal f_s0_rd_burstcount : integer; -- Remaining amount of read data
signal f_s0_avm_address : std_logic_vector(G_ADDRESS_SIZE-1 downto 0);
signal f_s0_avm_burstcount : std_logic_vector(7 downto 0);
p_s0_wr_burstcount : process (clk_i)
begin
if rising_edge(clk_i) then
if s0_avm_write_i and not s0_avm_waitrequest_o then
if f_s0_wr_burstcount = 0 then
f_s0_wr_burstcount <= to_integer(s0_avm_burstcount_i) - 1;
else
f_s0_wr_burstcount <= f_s0_wr_burstcount - 1;
end if;
end if;
if rst_i then
f_s0_wr_burstcount <= 0;
end if;
end if;
end process p_s0_wr_burstcount;
p_s0_rd_burstcount : process (clk_i)
begin
if rising_edge(clk_i) then
if s0_avm_readdatavalid_o then
f_s0_rd_burstcount <= f_s0_rd_burstcount - 1;
end if;
if s0_avm_read_i and not s0_avm_waitrequest_o then
f_s0_rd_burstcount <= to_integer(s0_avm_burstcount_i);
end if;
if rst_i then
f_s0_rd_burstcount <= 0;
end if;
end if;
end process p_s0_rd_burstcount;
p_s0_avm : process (clk_i)
begin
if rising_edge(clk_i) then
if f_s0_wr_burstcount = 0 and
f_s0_rd_burstcount = 0 and
rst_i = '0' and
(s0_avm_write_i or s0_avm_read_i) = '1' and
s0_avm_burstcount_i > X"01" then
f_s0_avm_burstcount <= s0_avm_burstcount_i;
f_s0_avm_address <= s0_avm_address_i;
end if;
end if;
end process p_s0_avm;
signal f_s1_wr_burstcount : integer; -- Remaining amount of write data
signal f_s1_rd_burstcount : integer; -- Remaining amount of read data
signal f_s1_avm_address : std_logic_vector(G_ADDRESS_SIZE-1 downto 0);
signal f_s1_avm_burstcount : std_logic_vector(7 downto 0);
p_s1_wr_burstcount : process (clk_i)
begin
if rising_edge(clk_i) then
if s1_avm_write_i and not s1_avm_waitrequest_o then
if f_s1_wr_burstcount = 0 then
f_s1_wr_burstcount <= to_integer(s1_avm_burstcount_i) - 1;
else
f_s1_wr_burstcount <= f_s1_wr_burstcount - 1;
end if;
end if;
if rst_i then
f_s1_wr_burstcount <= 0;
end if;
end if;
end process p_s1_wr_burstcount;
p_s1_rd_burstcount : process (clk_i)
begin
if rising_edge(clk_i) then
if s1_avm_readdatavalid_o then
f_s1_rd_burstcount <= f_s1_rd_burstcount - 1;
end if;
if s1_avm_read_i and not s1_avm_waitrequest_o then
f_s1_rd_burstcount <= to_integer(s1_avm_burstcount_i);
end if;
if rst_i then
f_s1_rd_burstcount <= 0;
end if;
end if;
end process p_s1_rd_burstcount;
p_s1_avm : process (clk_i)
begin
if rising_edge(clk_i) then
if f_s1_wr_burstcount = 0 and
f_s1_rd_burstcount = 0 and
rst_i = '0' and
(s1_avm_write_i or s1_avm_read_i) = '1' and
s1_avm_burstcount_i > X"01" then
f_s1_avm_burstcount <= s1_avm_burstcount_i;
f_s1_avm_address <= s1_avm_address_i;
end if;
end if;
end process p_s1_avm;
------------------------------------------------
-- Keep track of burst write and read on master
------------------------------------------------
signal f_m_wr_burstcount : integer; -- Remaining amount of write data
signal f_m_rd_burstcount : integer; -- Remaining amount of read data
signal f_m_avm_address : std_logic_vector(G_ADDRESS_SIZE-1 downto 0);
signal f_m_avm_burstcount : std_logic_vector(7 downto 0);
p_m_wr_burstcount : process (clk_i)
begin
if rising_edge(clk_i) then
if m_avm_write_o and not m_avm_waitrequest_i then
if f_m_wr_burstcount = 0 then
f_m_wr_burstcount <= to_integer(m_avm_burstcount_o) - 1;
else
f_m_wr_burstcount <= f_m_wr_burstcount - 1;
end if;
end if;
if rst_i then
f_m_wr_burstcount <= 0;
end if;
end if;
end process p_m_wr_burstcount;
p_m_rd_burstcount : process (clk_i)
begin
if rising_edge(clk_i) then
if m_avm_readdatavalid_i then
f_m_rd_burstcount <= f_m_rd_burstcount - 1;
end if;
if m_avm_read_o and not m_avm_waitrequest_i then
f_m_rd_burstcount <= to_integer(m_avm_burstcount_o);
end if;
if rst_i then
f_m_rd_burstcount <= 0;
end if;
end if;
end process p_m_rd_burstcount;
p_m_avm : process (clk_i)
begin
if rising_edge(clk_i) then
if f_m_wr_burstcount = 0 and
f_m_rd_burstcount = 0 and
rst_i = '0' and
(m_avm_write_o or m_avm_read_o) = '1' and
m_avm_burstcount_o > X"01" then
f_m_avm_burstcount <= m_avm_burstcount_o;
f_m_avm_address <= m_avm_address_o;
end if;
end if;
end process p_m_avm;
-----------------------------
-- ASSERTIONS ABOUT OUTPUTS
-----------------------------
-- Master must be empty after reset
f_master_after_reset_empty : assert always {rst_i} |=> not (m_avm_write_o or m_avm_read_o);
-- Master must not assert both write and read.
f_master_not_double: assert always {not rst_i} |-> not (m_avm_write_o and m_avm_read_o);
-- Master must be stable until accepted
f_master_stable : assert always {(m_avm_write_o or m_avm_read_o) and
m_avm_waitrequest_i and
not rst_i}
|=> {stable(m_avm_write_o) and
stable(m_avm_read_o) and
stable(m_avm_address_o) and
stable(m_avm_writedata_o) and
stable(m_avm_byteenable_o) and
stable(m_avm_burstcount_o)};
-- Master must not issue any new request during a read burst transfer
f_master_no_new_burst : assert always {f_m_rd_burstcount /= 0 and rst_i = '0'}
|-> not (m_avm_write_o or m_avm_read_o);
-- Master must not issue new read request during a write burst transfer
f_master_no_new_read : assert always {f_m_wr_burstcount /= 0 and rst_i = '0'}
|-> not (m_avm_read_o);
-- Master must not have both read and write burst simultaneously ongoing
f_master_only_one_burst : assert always f_m_rd_burstcount = 0 or f_m_wr_burstcount = 0 or rst_i = '1';
-- Master must keep burstcount and address stable during burst transfer
f_master_burst_stable : assert always {(f_m_rd_burstcount /= 0 or f_m_wr_burstcount /= 0) and
rst_i = '0' and
(m_avm_write_o or m_avm_read_o) = '1'}
|-> {m_avm_burstcount_o = f_m_avm_burstcount and
m_avm_address_o = f_m_avm_address};
-- Master must not issue zero burst
f_master_burst_valid : assert always rst_i or not ((m_avm_write_o or m_avm_read_o) and nor(m_avm_burstcount_o));
-----------------------------
-- ASSUMPTIONS ABOUT INPUTS
-----------------------------
-- There may be reset at startup.
f_reset : assume {rst_i};
-- Slave may not assert both write and read.
f_slave0_request_not_double: assume always not (s0_avm_write_i and s0_avm_read_i);
f_slave1_request_not_double: assume always not (s1_avm_write_i and s1_avm_read_i);
-- Slave request may be stable until accepted
f_slave0_input_stable : assume always {(s0_avm_write_i or s0_avm_read_i) and
s0_avm_waitrequest_o and
not rst_i}
|=> {stable(s0_avm_write_i) and
stable(s0_avm_read_i) and
stable(s0_avm_address_i) and
stable(s0_avm_writedata_i) and
stable(s0_avm_byteenable_i) and
stable(s0_avm_burstcount_i)};
f_slave1_input_stable : assume always {(s1_avm_write_i or s1_avm_read_i) and
s1_avm_waitrequest_o and
not rst_i}
|=> {stable(s1_avm_write_i) and
stable(s1_avm_read_i) and
stable(s1_avm_address_i) and
stable(s1_avm_writedata_i) and
stable(s1_avm_byteenable_i) and
stable(s1_avm_burstcount_i)};
-- Slave may not issue any new request during a read burst transfer
f_slave0_no_new_burst : assume always {f_s0_rd_burstcount /= 0 and rst_i = '0'}
|-> not (s0_avm_write_i or s0_avm_read_i);
f_slave1_no_new_burst : assume always {f_s1_rd_burstcount /= 0 and rst_i = '0'}
|-> not (s1_avm_write_i or s1_avm_read_i);
-- Slave may not issue new read request during a write burst transfer
f_slave0_no_new_read : assume always {f_s0_wr_burstcount /= 0 and rst_i = '0'}
|-> not (s0_avm_read_i);
f_slave1_no_new_read : assume always {f_s1_wr_burstcount /= 0 and rst_i = '0'}
|-> not (s1_avm_read_i);
-- Slave may not have both read and write burst simultaneously ongoing
f_slave0_only_one_burst : assume always f_s0_rd_burstcount = 0 or f_s0_wr_burstcount = 0 or rst_i = '1';
f_slave1_only_one_burst : assume always f_s1_rd_burstcount = 0 or f_s1_wr_burstcount = 0 or rst_i = '1';
-- Slave may keep burstcount and address stable during burst transfer
f_slave0_burst_stable : assume always {(f_s0_rd_burstcount /= 0 or f_s0_wr_burstcount /= 0) and
rst_i = '0' and
(s0_avm_write_i or s0_avm_read_i) = '1'}
|-> {s0_avm_burstcount_i = f_s0_avm_burstcount and
s0_avm_address_i = f_s0_avm_address};
f_slave1_burst_stable : assume always {(f_s1_rd_burstcount /= 0 or f_s1_wr_burstcount /= 0) and
rst_i = '0' and
(s1_avm_write_i or s1_avm_read_i) = '1'}
|-> {s1_avm_burstcount_i = f_s1_avm_burstcount and
s1_avm_address_i = f_s1_avm_address};
-- Slave may not issue zero burst
f_slave0_burst_valid : assume always rst_i or not ((s0_avm_write_i or s0_avm_read_i) and nor(s0_avm_burstcount_i));
f_slave1_burst_valid : assume always rst_i or not ((s1_avm_write_i or s1_avm_read_i) and nor(s1_avm_burstcount_i));
---------------------
-- Simulate a memory
---------------------
type f_mem_t is array (0 to 2**G_ADDRESS_SIZE-1) of std_logic_vector(G_DATA_SIZE-1 downto 0);
signal f_mem_data : f_mem_t;
signal f_mem_write_next_address : std_logic_vector(G_ADDRESS_SIZE-1 downto 0);
signal f_mem_write_words_left : std_logic_vector(7 downto 0);
signal f_mem_read_next_address : std_logic_vector(G_ADDRESS_SIZE-1 downto 0);
signal f_mem_read_words_left : std_logic_vector(7 downto 0);
-- Block requests during a read burst
f_mem_wait : assume always f_mem_read_words_left /= 0 |-> m_avm_waitrequest_i = '1';
-- Handle read from memory
f_mem_read : assume always m_avm_readdatavalid_i |-> m_avm_readdata_i = f_mem_data(to_integer(f_mem_read_next_address));
-- Only respond with data to an ongoing request
f_mem_read_data : assume always m_avm_readdatavalid_i |-> f_mem_read_words_left > 0;
p_mem : process (clk_i)
begin
if rising_edge(clk_i) then
if m_avm_write_o = '1' and m_avm_waitrequest_i = '0' then
if f_mem_write_words_left = X"00" then
f_mem_write_next_address <= std_logic_vector(unsigned(m_avm_address_o) 1);
f_mem_write_words_left <= std_logic_vector(unsigned(m_avm_burstcount_o) - 1);
for i in 0 to G_DATA_SIZE/8-1 loop
if m_avm_byteenable_o(i) then
f_mem_data(to_integer(m_avm_address_o))(8*i 7 downto 8*i) <= m_avm_writedata_o(8*i 7 downto 8*i);
end if;
end loop;
else
f_mem_write_next_address <= std_logic_vector(unsigned(f_mem_write_next_address) 1);
f_mem_write_words_left <= std_logic_vector(unsigned(f_mem_write_words_left) - 1);
for i in 0 to G_DATA_SIZE/8-1 loop
if m_avm_byteenable_o(i) then
f_mem_data(to_integer(f_mem_write_next_address))(8*i 7 downto 8*i) <= m_avm_writedata_o(8*i 7 downto 8*i);
end if;
end loop;
end if;
end if;
if m_avm_readdatavalid_i = '1' then
f_mem_read_next_address <= std_logic_vector(unsigned(f_mem_read_next_address) 1);
f_mem_read_words_left <= std_logic_vector(unsigned(f_mem_read_words_left) - 1);
end if;
if m_avm_read_o = '1' and m_avm_waitrequest_i = '0' then
f_mem_read_next_address <= std_logic_vector(unsigned(m_avm_address_o));
f_mem_read_words_left <= std_logic_vector(unsigned(m_avm_burstcount_o));
end if;
if rst_i = '1' then
f_mem_write_words_left <= (others => '0');
f_mem_read_words_left <= (others => '0');
end if;
end if;
end process p_mem;
--------------------------------------------
-- COVER STATEMENTS TO VERIFY REACHABILITY
--------------------------------------------
} -- vunit i_avm_arbit(avm_arbit(synthesis))