TextDistance -- python library for comparing distance between two or more sequences by many algorithms.
Features:
- 30 algorithms
- Pure python implementation
- Simple usage
- More than two sequences comparing
- Some algorithms have more than one implementation in one class.
- Optional numpy usage for maximum speed.
Algorithm | Class | Functions |
---|---|---|
Hamming | Hamming |
hamming |
MLIPNS | Mlipns |
mlipns |
Levenshtein | Levenshtein |
levenshtein |
Damerau-Levenshtein | DamerauLevenshtein |
damerau_levenshtein |
Jaro-Winkler | JaroWinkler |
jaro_winkler , jaro |
Strcmp95 | StrCmp95 |
strcmp95 |
Needleman-Wunsch | NeedlemanWunsch |
needleman_wunsch |
Gotoh | Gotoh |
gotoh |
Smith-Waterman | SmithWaterman |
smith_waterman |
Algorithm | Class | Functions |
---|---|---|
Jaccard index | Jaccard |
jaccard |
Sørensen–Dice coefficient | Sorensen |
sorensen , sorensen_dice , dice |
Tversky index | Tversky |
tversky |
Overlap coefficient | Overlap |
overlap |
Tanimoto distance | Tanimoto |
tanimoto |
Cosine similarity | Cosine |
cosine |
Monge-Elkan | MongeElkan |
monge_elkan |
Bag distance | Bag |
bag |
Algorithm | Class | Functions |
---|---|---|
longest common subsequence similarity | LCSSeq |
lcsseq |
longest common substring similarity | LCSStr |
lcsstr |
Ratcliff-Obershelp similarity | RatcliffObershelp |
ratcliff_obershelp |
Work in progress. Now all algorithms compare two strings as array of bits.
NCD
- normalized compression distance.
Functions:
bz2_ncd
lzma_ncd
arith_ncd
rle_ncd
bwtrle_ncd
zlib_ncd
Algorithm | Class | Functions |
---|---|---|
MRA | MRA |
mra |
Editex | Editex |
editex |
Algorithm | Class | Functions |
---|---|---|
Prefix similarity | Prefix |
prefix |
Postfix similarity | Postfix |
postfix |
Length distance | Length |
length |
Identity similarity | Identity |
identity |
Matrix similarity | Matrix |
matrix |
Only pure python implementation:
pip install textdistance
With extra libraries for maximum speed:
pip install textdistance[extras]
With all libraries (required for benchmarking and testing):
pip install textdistance[benchmark]
With algorithm specific extras:
pip install textdistance[Hamming]
Algorithms with available extras: DamerauLevenshtein
, Hamming
, Jaro
, JaroWinkler
, Levenshtein
.
Via pip:
pip install -e git https://github.com/orsinium/textdistance.git#egg=textdistance
Or clone repo and install with some extras:
git clone https://github.com/orsinium/textdistance.git
pip install -e .[benchmark]
All algorithms have 2 interfaces:
- Class with algorithm-specific params for customizing.
- Class instance with default params for quick and simple usage.
All algorithms have some common methods:
.distance(*sequences)
-- calculate distance between sequences..similarity(*sequences)
-- calculate similarity for sequences..maximum(*sequences)
-- maximum possible value for distance and similarity. For any sequence:distance similarity == maximum
..normalized_distance(*sequences)
-- normalized distance between sequences. The return value is a float between 0 and 1, where 0 means equal, and 1 totally different..normalized_similarity(*sequences)
-- normalized similarity for sequences. The return value is a float between 0 and 1, where 0 means totally different, and 1 equal.
Most common init arguments:
qval
-- q-value for split sequences into q-grams. Possible values:- 1 (default) -- compare sequences by chars.
- 2 or more -- transform sequences to q-grams.
- None -- split sequences by words.
as_set
-- for token-based algorithms:- True --
t
andttt
is equal. - False (default) --
t
andttt
is different.
- True --
For example, Hamming distance:
import textdistance
textdistance.hamming('test', 'text')
# 1
textdistance.hamming.distance('test', 'text')
# 1
textdistance.hamming.similarity('test', 'text')
# 3
textdistance.hamming.normalized_distance('test', 'text')
# 0.25
textdistance.hamming.normalized_similarity('test', 'text')
# 0.75
textdistance.Hamming(qval=2).distance('test', 'text')
# 2
Any other algorithms have same interface.
For main algorithms textdistance try to call known external libraries (fastest first) if available (installed in your system) and possible (this implementation can compare this type of sequences). Install textdistance with extras for this feature.
You can disable this by passing external=False
argument on init:
import textdistance
hamming = textdistance.Hamming(external=False)
hamming('text', 'testit')
# 3
Supported libraries:
Algorithms:
- DamerauLevenshtein
- Hamming
- Jaro
- JaroWinkler
- Levenshtein
Without extras installation:
algorithm | library | function | time |
---|---|---|---|
DamerauLevenshtein | jellyfish | damerau_levenshtein_distance | 0.00965294 |
DamerauLevenshtein | pyxdameraulevenshtein | damerau_levenshtein_distance | 0.151378 |
DamerauLevenshtein | pylev | damerau_levenshtein | 0.766461 |
DamerauLevenshtein | textdistance | DamerauLevenshtein | 4.13463 |
DamerauLevenshtein | abydos | damerau_levenshtein | 4.3831 |
Hamming | Levenshtein | hamming | 0.0014428 |
Hamming | jellyfish | hamming_distance | 0.00240262 |
Hamming | distance | hamming | 0.036253 |
Hamming | abydos | hamming | 0.0383933 |
Hamming | textdistance | Hamming | 0.176781 |
Jaro | Levenshtein | jaro | 0.00313561 |
Jaro | jellyfish | jaro_distance | 0.0051885 |
Jaro | py_stringmatching | jaro | 0.180628 |
Jaro | textdistance | Jaro | 0.278917 |
JaroWinkler | Levenshtein | jaro_winkler | 0.00319735 |
JaroWinkler | jellyfish | jaro_winkler | 0.00540443 |
JaroWinkler | textdistance | JaroWinkler | 0.289626 |
Levenshtein | Levenshtein | distance | 0.00414404 |
Levenshtein | jellyfish | levenshtein_distance | 0.00601647 |
Levenshtein | py_stringmatching | levenshtein | 0.252901 |
Levenshtein | pylev | levenshtein | 0.569182 |
Levenshtein | distance | levenshtein | 1.15726 |
Levenshtein | abydos | levenshtein | 3.68451 |
Levenshtein | textdistance | Levenshtein | 8.63674 |
Total: 24 libs.
Yeah, so slow. Use TextDistance on production only with extras.
Textdistance use benchmark's results for algorithm's optimization and try to call fastest external lib first (if possible).
You can run benchmark manually on your system:
pip install textdistance[benchmark]
python3 -m textdistance.benchmark
TextDistance show benchmarks results table for your system and save libraries priorities into libraries.json
file in TextDistance's folder. This file will be used by textdistance for calling fastest algorithm implementation. Default libraries.json already included in package.
You can run tests via tox:
sudo pip3 install tox
tox