这是一个将Keras模型转化为.uff的通用的一种做法!过程中使用了TensorRT的plugin,为了使用plugin,将Keras模型转换为Tensorflow的.pb模型,然后将.pb模型通过GraphSurgeon 和UFF转换为.uff模型.
主要涉及的Plugin
ResizeNearest
- Nearest neighbor interpolation for resizing features. This works for the FPN (Feature Pyramid Network) module.ProposalLayer
- Generate the first stage's proposals based on anchors and RPN's (Region Proposal Network) outputs (scores, bbox_deltas).PyramidROIAlign
- Crop and resize the feature of ROIs (first stage's proposals) from the corresponding feature layer.DetectionLayer
- Refine the first stage's proposals to produce final detections.SpecialSlice
- A workaround plugin to slice detection output [y1, x1, y2, x2, class_id, score] to [y1, x1, y2 , x2] for data with more than one index dimensions (batch_idx, proposal_idx, detections(y1, x1, y2, x2)).
注意:我们参考了TensorRT官方sample中的Mask RCNN的实现,请按照本Repo中要求配置环境,这样避免出现各种各样的错误(菜坑后的忠告),其次我们提供了独立易读的C 代码调用,不会像TensorRT sample中因为多层封装不易阅读。
- paper :Mask R-CNN
- GitHub: Mask R-CNN Github repository
- 版本:2.0
- model- ResNet 101 FPN: https://github.com/matterport/Mask_RCNN/releases/download/v2.0/mask_rcnn_coco.h5
- Docker镜像: nvcr.io/nvidia/tensorflow:18.12-py3 # tensorflow=1.12
- uff=0.6.5
- graphsurgeon=0.4.1
- imageio=2.8.0
- keras == 2.1.3
- scikit-image
-
安装必要的library
我们基于基础的Tensorflow镜像进行安装
nvcr.io/nvidia/tensorflow:18.12-py3
sudo nvidia-docker run nvcr.io/nvidia/tensorflow:18.12-py3
cd ./converted/
pip3 install -r requirements.txt
pip3 install ./pylib/uff-0.6.5-py2.py3-none-any.whl
pip3 install ./pylib/graphsurgeon-0.4.1-py2.py3-none-any.whl
- 修改uff库的代码:一般在
/usr/lib/python3.6/dist-packages/uff/converters/tensorflow/converter_functions.py
.
uff_graph.conv_transpose(
inputs[0], inputs[2], inputs[1],
strides, padding,
dilation=None, number_groups=number_groups,
left_format=lhs_fmt, right_format=rhs_fmt,
name=name, fields=fields
)
- 下载keras版Mask RCNN的代码库
git clone https://github.com/matterport/Mask_RCNN.git
- 使用patch更新Mask RCNN代码库的代码,将代码中的NHWC转为NCHW
cd Mask_RCNN
git checkout 3deaec5
patch -p1 < ../0001-Update-the-Mask_RCNN-model-from-NHWC-to-NCHW.patch
cd -
- 下载预训练的模型
wget https://github.com/matterport/Mask_RCNN/releases/download/v2.0/mask_rcnn_coco.h5
- 将Keras模型转.pb并转为.uff
# 自己的模型得修改config.py!!!!
python3 mrcnn_to_trt_single.py -w ../mask_rcnn_coco.h5 -o ../mrcnn_nchw.uff -p ./config.py
- trtexec 生成engine
trtexec --uff=mrcnn_nchw.uff --output=mrcnn_detection --output=mrcnn_mask/Sigmoid --uffInput=input_image,3,1024,1024 --saveEngine=mask.plan --workspace=3000 --verbose
看到了pass恭喜你成功序列化Mask RCNN.
我们提供了Mask RCNN在C 下通过TensorRT调用识别的完整代码,其识别结果如下图所示: