-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtwo_moons.py
102 lines (91 loc) · 3.85 KB
/
two_moons.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import numpy as np
import torch
from torch.utils.data import DataLoader, TensorDataset
import scipy.optimize as optimize
from matplotlib import pyplot as plt
from dataset import Dataset
from model import *
from utils import *
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
nets = {'FCNet': [FCNet(), 256, 20]}
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def load_model(filepath, model_id):
args = load_args(filepath+'/train_settings.npz')
cnn_model = nets[args.NET][0]
dist_model = DistNet(args.LATENT_DIM, args.CLASSES, args.REGULAR)
pred_model = PredictionNet(cnn_model, dist_model, nets[args.NET][1], args.LATENT_DIM, args.CLASSES, args.REGULAR)
pred_model.load_state_dict(torch.load(filepath+f'/model_{model_id}.pt').get('model_state_dict'))
pred_model = pred_model.to(device)
pred_model.eval()
try:
centroids = torch.tensor(np.load(path+f'/centroids_0.npy')).to(device)
except:
centroids = None
return args, pred_model, centroids
def get_test_grid():
bnds = ((0, None), (0, None))
domain = 3
x_lin = np.linspace(-domain+0.5, domain+0.5, 100)
y_lin = np.linspace(-domain, domain, 100)
xx, yy = np.meshgrid(x_lin, y_lin)
X_grid = np.column_stack([xx.flatten(), yy.flatten()])
n, iw = X_grid.shape
grid_dl = DataLoader(torch.tensor(X_grid), batch_size=500, shuffle=False)
return grid_dl, x_lin, y_lin, xx.shape
def plot_grid(z, dataset, x_lin, y_lin):
cmap = plt.get_cmap('cividis')
plt.clf()
plt.set_cmap(cmap)
cbar_min = 0
cbar_max = 1
plt.contourf(x_lin, y_lin, z, cmap=cmap, levels=np.linspace(cbar_min, cbar_max, num=5, endpoint=True))
cbar = plt.colorbar()
cbar.set_ticks(np.linspace(cbar_min, cbar_max, num=5, endpoint=True))
X_test_vis = dataset.X_train[:200]
y_test_vis = dataset.y_train[:200]
mask = np.bool_(y_test_vis)
plt.scatter(X_test_vis[mask,0], X_test_vis[mask,1], facecolors='none', edgecolors='r')
plt.scatter(X_test_vis[~mask,0], X_test_vis[~mask,1], facecolors='none', edgecolors='b')
plt.xlabel('Dimension 1')
plt.ylabel('Dimension 2')
plt.savefig('projects/twinprotonet/twomoons.png', bbox_inches='tight', pad_inches=0.1)
def get_train_stats(dataset, pred_model, centroids):
ucd = []
with torch.no_grad():
for images, labels in dataset.train_dl:
images = images.to(device).float()
with torch.no_grad():
score, dist, _, _ = pred_model(images, centroids=centroids)
ucd.append(dist.cpu().detach().numpy())
ucd = np.amax(np.concatenate(ucd, 0), 1)
ucd_std = np.std(ucd)
ucd_05 = np.sort(ucd)[int(1500*(1-0.95))]
return ucd_05, ucd_std
def calculate_uc(grid_dl, pred_model, centroids, regular):
uc = []
with torch.no_grad():
for images in grid_dl:
images = images.to(device).float()
with torch.no_grad():
if regular:
score, _, _, _ = pred_model(images)
uc.append(torch.softmax(score, 1).cpu().detach().numpy())
else:
score, dist, _, _ = pred_model(images, centroids=centroids)
uc.append(dist.cpu().detach().numpy())
uc = np.concatenate(uc, 0)
return np.amax(uc, 1)
if __name__ == "__main__":
path = f'models/moon_twin_FCNet_256_128_0.05'
args, pred_model, centroids = load_model(path, 0)
dataset = Dataset(args.DATASET)
dataset.set_train_dataloader(args.TRAIN_BATCH_SIZE)
dataset.set_centroid_dataloader(args.TRAIN_BATCH_SIZE)
grid_dl, x_lin, y_lin, x_shape = get_test_grid()
uc = calculate_uc(grid_dl, pred_model, centroids, args.REGULAR)
if not args.REGULAR:
ucd_05, ucd_std = get_train_stats(dataset, pred_model, centroids)
uc = sigmoid((uc-(ucd_05))/(ucd_std))
z = uc.reshape(x_shape)
plot_grid(z, dataset, x_lin, y_lin)