Skip to content

Gradient Descent Optimizers and Genetic Algorithms using GPUs, CPUs, and FPGAs via CUDA, OpenCL, and oneAPI

License

Notifications You must be signed in to change notification settings

BrosnanYuen/RayBNN_Optimizer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RayBNN_Optimizer

Gradient Descent Optimizers and Genetic Algorithms using GPUs, CPUs, and FPGAs via CUDA, OpenCL, and oneAPI

  • ADAM
  • SGD
  • Genetic
  • Random Search

Install Arrayfire

Install the Arrayfire 3.9.0 binaries at https://arrayfire.com/binaries/

or build from source https://github.com/arrayfire/arrayfire/wiki/Getting-ArrayFire

Add to Cargo.toml

arrayfire = { version = "3.8.1", package = "arrayfire_fork" }
rayon = "1.10.0"
num = "0.4.3"
num-traits = "0.2.19"
half = { version = "2.4.1" , features = ["num-traits"] }
RayBNN_Optimizer = "2.0.1"

List of Examples

Optimizing values for a loss function


//Define Starting Point for optimization
let x0_cpu = vec![0.1, 0.4, 0.5,   -1.2, 0.7];
let x0_dims = arrayfire::Dim4::new(&[1, x0_cpu.len() as u64, 1, 1]);
let x0 = arrayfire::Array::new(&x0_cpu, x0_dims);

//Define the loss function
let y_cpu = vec![-1.1, 0.4, 2.0,    2.1, 4.0];
let y = arrayfire::Array::new(&y_cpu, x0_dims);

//Define the loss function
let loss = |yhat: &arrayfire::Array<f64>| -> arrayfire::Array<f64> {
    RayBNN_Optimizer::Continuous::Loss::MSE(yhat, &y)
};

//Define the gradient of the loss function
let loss_grad = |yhat: &arrayfire::Array<f64>| -> arrayfire::Array<f64> {
    RayBNN_Optimizer::Continuous::Loss::MSE_grad(yhat, &y)
};


let mut point = x0.clone();
let mut direction = -loss_grad(&point);
let mut mt = arrayfire::constant::<f64>(0.0,direction.dims());
let mut vt = arrayfire::constant::<f64>(0.0,direction.dims());

let single_dims = arrayfire::Dim4::new(&[1,1,1,1]);
let mut alpha = arrayfire::constant::<f64>(1.0,single_dims);

let alpha_max = arrayfire::constant::<f64>(1.0,single_dims);

let rho = arrayfire::constant::<f64>(0.1,single_dims);

//Create alpha values to sweep through
let v = 30;
let alpha_vec = RayBNN_Optimizer::Continuous::LR::create_alpha_vec::<f64>(v, 1.0, 0.5);


let beta0 = arrayfire::constant::<f64>(0.9,single_dims);
let beta1 = arrayfire::constant::<f64>(0.999,single_dims);

//Optimization Loop
for i in 0..120
{
    alpha = alpha_max.clone();
    //Automatically Determine Optimal Step Size using BTLS
    RayBNN_Optimizer::Continuous::LR::BTLS(
        loss
        ,loss_grad
        ,&point
        ,&direction
        ,&alpha_vec
        ,&rho
        ,&mut alpha
    );

    //Update current point
    point = point.clone()    alpha*direction.clone();
    direction = -loss_grad(&point);



    //Use ADAM optimizer
    RayBNN_Optimizer::Continuous::GD::adam(
        &beta0
        ,&beta1
        ,&mut direction
        ,&mut mt
        ,&mut vt
    );

}

Types of Loss Functions

let mut cross_entropy = RayBNN_Optimizer::Continuous::Loss::softmax_cross_entropy(&Yhat,&Y);
let mut cross_entropy_grad = RayBNN_Optimizer::Continuous::Loss::softmax_cross_entropy_grad(&Yhat,&Y);
let mut cross_entropy = RayBNN_Optimizer::Continuous::Loss::sigmoid_cross_entropy(&Yhat,&Y);
let mut cross_entropy_grad = RayBNN_Optimizer::Continuous::Loss::sigmoid_cross_entropy_grad(&Yhat,&Y);
let mut MAE = RayBNN_Optimizer::Continuous::Loss::MAE(&Yhat,&Y);
let mut MSE = RayBNN_Optimizer::Continuous::Loss::MSE(&Yhat,&Y);
let MSE_grad = RayBNN_Optimizer::Continuous::Loss::MSE_grad(&Yhat,&Y);
let mut RMSE = RayBNN_Optimizer::Continuous::Loss::RMSE(&Yhat,&Y);