The official repo of:
[1] Changsheng Quan, Xiaofei Li. Multi-channel Narrow-band Deep Speech Separation with Full-band Permutation Invariant Training. In ICASSP 2022.
[2] Changsheng Quan, Xiaofei Li. Multichannel Speech Separation with Narrow-band Conformer. In Interspeech 2022.
[3] Changsheng Quan, Xiaofei Li. NBC2: Multichannel Speech Separation with Revised Narrow-band Conformer. arXiv:2212.02076.
[4] Changsheng Quan, Xiaofei Li. SpatialNet: Extensively Learning Spatial Information for Multichannel Joint Speech Separation, Denoising and Dereverberation. TASLP, 2024.
[5] Changsheng Quan, Xiaofei Li. Multichannel Long-Term Streaming Neural Speech Enhancement for Static and Moving Speakers. IEEE Signal Precessing Letters, 2024.
Audio examples can be found at https://audio.westlake.edu.cn/Research/nbss.htm and https://audio.westlake.edu.cn/Research/SpatialNet.htm. More information about our group can be found at https://audio.westlake.edu.cn.
SpatialNet:
pip install -r requirements.txt
# gpuRIR: check https://github.com/DavidDiazGuerra/gpuRIR
Generate rirs for the dataset SMS-WSJ_plus
used in SpatialNet
ablation experiment.
CUDA_VISIBLE_DEVICES=0 python generate_rirs.py --rir_dir ~/datasets/SMS_WSJ_Plus_rirs --save_to configs/datasets/sms_wsj_rir_cfg.npz
cp configs/datasets/sms_wsj_plus_diffuse.npz ~/datasets/SMS_WSJ_Plus_rirs/diffuse.npz # copy diffuse parameters
For SMS-WSJ, please see https://github.com/fgnt/sms_wsj
This project is built on the pytorch-lightning
package, in particular its command line interface (CLI). Thus we recommond you to have some knowledge about the CLI in lightning. For Chinese user, you can learn CLI & lightning with this begining project pytorch_lightning_template_for_beginners.
Train SpatialNet on the 0-th GPU with network config file configs/SpatialNet.yaml
and dataset config file configs/datasets/sms_wsj_plus.yaml
(replace the rir & clean speech dir before training).
python SharedTrainer.py fit \
--config=configs/SpatialNet.yaml \ # network config
--config=configs/datasets/sms_wsj_plus.yaml \ # dataset config
--model.channels=[0,1,2,3,4,5] \ # the channels used
--model.arch.dim_input=12 \ # input dim per T-F point, i.e. 2 * the number of channels
--model.arch.dim_output=4 \ # output dim per T-F point, i.e. 2 * the number of sources
--model.arch.num_freqs=129 \ # the number of frequencies, related to model.stft.n_fft
--trainer.precision=bf16-mixed \ # mixed precision training, can also be 16-mixed or 32, where 32 can produce the best performance
--model.compile=true \ # compile the network, requires torch>=2.0. the compiled model is trained much faster
--data.batch_size=[2,4] \ # batch size for train and val
--trainer.devices=0, \
--trainer.max_epochs=100 # better performance may be obtained if more epochs are given
More gpus can be used by appending the gpu indexes to trainer.devices
, e.g. --trainer.devices=0,1,2,3,
.
Resume training from a checkpoint:
python SharedTrainer.py fit --config=logs/SpatialNet/version_x/config.yaml \
--data.batch_size=[2,2] \
--trainer.devices=0, \
--ckpt_path=logs/SpatialNet/version_x/checkpoints/last.ckpt
where version_x
should be replaced with the version you want to resume.
Test the model trained:
python SharedTrainer.py test --config=logs/SpatialNet/version_x/config.yaml \
--ckpt_path=logs/SpatialNet/version_x/checkpoints/epochY_neg_si_sdrZ.ckpt \
--trainer.devices=0,
network | file |
---|---|
NB-BLSTM [1] / NBC [2] / NBC2 [3] | models/arch/NBSS.py |
SpatialNet [4] | models/arch/SpatialNet.py |
online SpatialNet [5] | models/arch/OnlineSpatialNet.py |
The dataset generation & training commands for the NB-BLSTM
/NBC
/NBC2
are available in the NBSS
branch.