Skip to content

Explore the dynamics of solute transport across membranes. Diving into the intricacies of solute transport and fouling within membranes

License

Notifications You must be signed in to change notification settings

Andemanden/Computational-Solute-Transport-Across-Membranes

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Solute Transport Computation On Membranes

Matlab Version Topic Uni. ECTS. LIC

A Membrane-based Process Modeling Simulation Using Emperical Numerical Methods


Show Creators Of Project:Project Creators:

Axelsen, D. A. L.,
Galsøe, P.,
Hansen, J. A.,
Mølgaard, J. S.,
Rehné, A. M.,
Zegarra, L. K.,

Table of contents

General info

A chemistry tool for modeling solute molecules transport through a membrane. It uses data from a Visual MINTEQ simulation of a solution where equilibrium has transpired.

Key incorporated theoretical aspects

  • Advections
    • Solute addvection
    • Percipitate addvection
  • Convection
  • Percipitate suspension
  • Indirect equilibrium Incorporation (From MINTEQ)
  • pH specification (From MINTEQ)
  • Osmotic pressure
  • Solute Accumulation
  • Fouling
  • Conservation of mass investigation

Mathematical methodology

The concept is an emperical numerical method based on the generalized advection-diffusion equation.

The movement equation of the emperical model is solved numerically as a finite difference explicit upwind scheme in accordance to the forward Euler method as:

$$c_{i,j}=c_{i,j-1} D \frac{(c_{i 1,j-1}-2c_{i,j-1} c_{i-1,j-1})}{\Delta x^2}\Delta t - J_{tot,v} \frac{(c_{i,j-1}-c_{i-1,j-1})}{\Delta x} \Delta t$$

Bountary Conditions

The boundary conditions is defined as follows:

$$ c_{L_x,j}-c_{L_x,j-1}=D(\frac{c_{L_x \Delta x,j-1}-c_{L_x,j-1}}{\Delta x^2} \frac{c_{L_x,j-1} c_{L_x-\Delta x,j-1}}{\Delta x^2})\Delta t - J_{tot,v}\frac{(c_{L_x,j-1}\cdot (1-\sigma_i)- c_{L_x-\Delta x,j-1})}{\Delta x}\Delta t $$

Stability

Tip

Stability indicators for diffusion and advection are in the console and plot, respectively.

The diffusive and advective stabilities is defined in isolated enviorments by the following conditions:

$$D\frac{\Delta t}{\Delta x^2} \leq \frac{1}{2} ~~~ And ~~~ J_{tot,v}\frac{\Delta t}{\Delta x} <1$$ And $$J_{tot,v}\frac{\Delta t}{\Delta x} <1$$

While in a system where both of these stabilities are relevant a new term must be upheld:

$$1-J_{tot,v}\frac{\Delta t}{\Delta x} - 2D\frac{\Delta t}{\Delta x^2} \geq 0$$

Installation

OS X & Windows:

git clone https://github.com/Andemanden/Computational-Solute-Transport-Across-Membranes.git

Linux:

git clone https://github.com/Andemanden/Computational-Solute-Transport-Across-Membranes.git --depth 1 --branch=master ~/dir-name

Current MATLAB version:
MathWorks Page

Visual MINTEQ:
The MINTEQ Page

Simulation Results

Pictures to be added

Use cases

This code has already been used in this article: 1

Current progress

Progress: [======================] 100%

Footnotes

  1. Membrane-based Process Modeling of Phosphorus Recovery from the Danish Sewage Sludge Using Numerical Methods