The memchr
crate provides heavily optimized routines for searching bytes. This fork provides SIMD optimizations for all platforms using.
Dual-licensed under MIT or the UNLICENSE.
- The top-level module provides routines for searching for 1, 2 or 3 bytes in the forward or reverse direction. When searching for more than one byte, positions are considered a match if the byte at that position matches any of the bytes.
- The
memmem
sub-module provides forward and reverse substring search routines.
In all such cases, routines operate on &[u8]
without regard to encoding. This
is exactly what you want when searching either UTF-8 or arbitrary bytes.
memchr links to the standard library by default, but you can disable the
std
feature if you want to use it in a #![no_std]
crate:
[dependencies]
memchr = { version = "2", default-features = false }
On x86 platforms, when the std
feature is disabled, the SSE2 accelerated
implementations will be used. When std
is enabled, AVX accelerated
implementations will be used if the CPU is determined to support it at runtime.
memchr
is a routine that is part of libc, although this crate does not use
libc by default. Instead, it uses its own routines, which are either vectorized
or generic fallback routines. In general, these should be competitive with
what's in libc, although this has not been tested for all architectures. If
using memchr
from libc is desirable and a vectorized routine is not otherwise
available in this crate, then enabling the libc
feature will use libc's
version of memchr
.
The rest of the functions in this crate, e.g., memchr2
or memrchr3
and the
substring search routines, will always use the implementations in this crate.
One exception to this is memrchr
, which is an extension in libc
found on
Linux. On Linux, memrchr
is used in precisely the same scenario as memchr
,
as described above.
This crate's minimum supported rustc
version is 1.41.1
.
The current policy is that the minimum Rust version required to use this crate
can be increased in minor version updates. For example, if crate 1.0
requires
Rust 1.20.0, then crate 1.0.z
for all values of z
will also require Rust
1.20.0 or newer. However, crate 1.y
for y > 0
may require a newer minimum
version of Rust.
In general, this crate will be conservative with respect to the minimum supported version of Rust.
Given the complexity of the code in this crate, along with the pervasive use
of unsafe
, this crate has an extensive testing strategy. It combines multiple
approaches:
- Hand-written tests.
- Exhaustive-style testing meant to exercise all possible branching and offset calculations.
- Property based testing through
quickcheck
. - Fuzz testing through
cargo fuzz
. - A huge suite of benchmarks that are also run as tests. Benchmarks always confirm that the expected result occurs.
Improvements to the testing infrastructure are very welcome.
At time of writing, this crate's implementation of substring search actually has a few different algorithms to choose from depending on the situation.
- For very small haystacks, Rabin-Karp is used to reduce latency. Rabin-Karp has very small overhead and can often complete before other searchers have even been constructed.
- For small needles, a variant of the "Generic SIMD" algorithm is used. Instead of using the first and last bytes, a heuristic is used to select bytes based on a background distribution of byte frequencies.
- In all other cases, Two-Way is used. If possible, a prefilter based on the "Generic SIMD" algorithm linked above is used to find candidates quickly. A dynamic heuristic is used to detect if the prefilter is ineffective, and if so, disables it.