With Streamlit, you can easily host your Python scripts as web applications, making it a great tool for demonstrating your results or models.
It's best to deploy your Streamlit applications separately rather than using a single deployment for all of them. Since Streamlit is built on Python, it's crucial to use a dependency manager for your application. Please consider one of the following options:
In this example, we're using pipenv
as our dependency manager, but feel free to choose any of the others.
Most of these dependency managers can provide a specific Python version for your project,
allowing you to use a different version than your system's default Python installation.
pipenv install streamlit
You may need following libraries too:
pipenv install numpy
pipenv install pandas
pipenv install polars
After installing the requirements, you have Pipfile
(which is written in TOML
and you can also manually change it) and Pipfile.lock
:
[[source]]
url = "https://pypi.org/simple"
verify_ssl = true
name = "pypi"
[packages]
streamlit = "*"
pandas = "*"
[dev-packages]
ruff = "*"
mypy = "*"
pandas-stubs = "*"
[requires]
python_version = "3.12"
Python is a dynamically typed language, so we strongly suggest use following linters in your code:
streamlit config show
streamlit run main.py
When you're ready to deploy your application to production, you should build your Docker image and integrate this process into your CI pipeline.
The following Dockerfile installs the requirements using pipenv
and then serve
Streamlit application on port 1378.
FROM python:3.12-slim
ENV TZ="Asia/Tehran"
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential \
curl \
software-properties-common \
git \
&& rm -rf /var/lib/apt/lists/*
WORKDIR /app
COPY Pipfile Pipfile
COPY Pipfile.lock Pipfile.lock
RUN pip install --no-cache-dir pipenv && \
pipenv install --system --clear
COPY . .
EXPOSE 1378
HEALTHCHECK CMD curl --fail http://localhost:1378/_stcore/health
ENTRYPOINT ["streamlit", "run", "main.py", "--server.port=1378", "--server.address=0.0.0.0"]
Then you can build docker image in your CI:
-
GitHub
name: ci on: - push jobs: # you can remove lint stage, but remember to remove it from docker stage # requirements too. lint: name: lint runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 - uses: actions/setup-python@v5 with: python-version: "3.12" - run: pip install pipenv - run: pipenv install --dev -v - run: pipenv run mypy . docker: name: docker runs-on: ubuntu-latest needs: - lint steps: - uses: actions/checkout@v4 - uses: docker/setup-buildx-action@v3 - uses: docker/setup-qemu-action@v3 - uses: docker/login-action@v3 with: registry: ghcr.io username: ${{ github.repository_owner }} password: ${{ secrets.GITHUB_TOKEN }} - uses: docker/bake-action@v5 with: files: "docker-bake.json" push: true
-
GitLab
lint: stage: lint # set this to true if you don't want to have linting allow_failure: false image: python:3.12-slim variables: # proxy variables are required because GitLab workers are in Iran. http_proxy: "http://proxy.snappcloud.io:3128" https_proxy: "http://proxy.snappcloud.io:3128" no_proxy: ".snappcloud.io,.snapp.ir" before_script: - pip install -U pipenv pip - pipenv install --dev -v - echo "lint stage ${CI_PROJECT_NAME} on ${CI_COMMIT_REF_SLUG} branch" script: - pipenv run ruff check main.py rides.py - pipenv run mypy .
build-and-release: image: docker:latest stage: build when: manual variables: # set these variables according your target namespace in which you want to # push the image. OKD4_TEH1_REGISTRY: "image-registry.apps.private.okd4.teh-1.snappcloud.io" RELEASE_CONTAINER_REGISTRY_ADDRESS: "$OKD4_TEH1_REGISTRY" RELEASE_CONTAINER_REGISTRY_IMAGE: "$OKD4_TEH1_REGISTRY/visualization/$CI_PROJECT_NAME" RELEASE_CONTAINER_REGISTRY_USERNAME: "gitlab-runner" RELEASE_CONTAINER_REGISTRY_PASSWORD: ${OKD4_TEH1_VISUALIZATION_TOKEN} before_script: - docker info - docker login -u ${CI_REGISTRY_USER} -p ${CI_REGISTRY_PASSWORD} ${CI_REGISTRY} - docker login -u ${RELEASE_CONTAINER_REGISTRY_USERNAME} -p ${RELEASE_CONTAINER_REGISTRY_PASSWORD} ${RELEASE_CONTAINER_REGISTRY_ADDRESS} script: - export CURRENT_DATETIME=$(TZ=Asia/Tehran date ' %FT%T') # proxy variables are required because GitLab workers are in Iran. - docker build --build-arg BUILD_DATE=$CURRENT_DATETIME --build-arg VCS_REF=${CI_COMMIT_SHA} --build-arg BUILD_VERSION=${CI_COMMIT_REF_NAME} --build-arg HTTP_PROXY=http://proxy.snappcloud.io:3128/ --build-arg HTTPS_PROXY=http://proxy.snappcloud.io:3128/ -t ${CI_PROJECT_NAME}:${CI_COMMIT_REF_NAME} -f Dockerfile . - docker tag ${CI_PROJECT_NAME}:${CI_COMMIT_REF_NAME} ${RELEASE_CONTAINER_REGISTRY_IMAGE}:${CI_COMMIT_REF_NAME} - docker push ${RELEASE_CONTAINER_REGISTRY_IMAGE}:${CI_COMMIT_REF_NAME}
To Deploy the application on Kubernetes, you only need to have a deployment
and
httpproxy
. If your application has configuration (the easiest way for handling
configuration in python is environment variables) then you may need secret
and
configmap
too.
---
kind: Service
apiVersion: v1
metadata:
name: <name>
labels:
app: <name>
spec:
ports:
- protocol: TCP
port: 1378
targetPort: 1378
selector:
app: <name>
---
apiVersion: apps/v1
kind: Deployment
metadata:
labels:
app: <name>
name: <name>
spec:
replicas: 1
selector:
matchLabels:
app: <name>
template:
metadata:
labels:
app: <name>
spec:
containers:
- name: <name>-main
image: <image>
imagePullPolicy: Always
env:
- name: CLICKHOUSE_HOST
value: "****"
- name: CLICKHOUSE_PORT
value: "****"
resources:
limits:
cpu: 1
ephemeral-storage: 1Gi
memory: 1Gi
requests:
cpu: 300m
ephemeral-storage: 1Gi
memory: 1Gi
volumes:
- name: data
emptyDir: {}
---
kind: Route
apiVersion: route.openshift.io/v1
metadata:
name: <name>
labels:
app: <name>
router: private
spec:
host: <url>
path: /
to:
kind: Service
name: <name>
weight: 100
port:
targetPort: 1378
tls:
termination: edge
insecureEdgeTerminationPolicy: Redirect
wildcardPolicy: None