Skip to content

Instantly share code, notes, and snippets.

@mkffl
Created April 10, 2022 19:06
Show Gist options
  • Save mkffl/8a547442929d8b8cca41152e8fae82e6 to your computer and use it in GitHub Desktop.
Save mkffl/8a547442929d8b8cca41152e8fae82e6 to your computer and use it in GitHub Desktop.
{
"cells": [
{
"cell_type": "markdown",
"source": [
"Michel Kiffel<br />\n",
"[email protected]<br />\n",
"This notebook supports [this blog article](https://mkffl.github.io/2022/03/02/Decisions-Part-3.html)"
],
"metadata": {
"id": "KPhuGzHOTnPv"
}
},
{
"cell_type": "markdown",
"metadata": {
"id": "k0iuDR861Vsi"
},
"source": [
"## Objective\n",
"- Visual validation of ML model score calibration\n",
" - Calibration of log-likelihood ratios using logistic regression\n",
" - Validation using known score distributions to calculate the true ratios\n",
" - Visual inspection of calibration fit on a separate dataset of scores\n",
"\n",
"## Logistic regression calibration\n",
"- Estimate \n",
"$$\\text{llr}(x ; \\omega) = \\log \\frac{ p(x \\vert \\omega_1)}{p(x \\vert \\omega_0)}$$\n",
"- Using logistic regression, which by default estimates target class log-odds i.e.\n",
"$$\\text{log-odds}(\\omega; x) = \\log \\frac{ p(\\omega_1 \\vert x)}{p(\\omega_0 \\vert x)}$$\n",
"\n",
"- Conversion from log-odds to llr uses the relation log-odds = llr effective-prior (ep) hence llr = log-odds - ep\n",
"\n",
"## Score distributions\n",
"- I test two assumptions for the score class-conditional density\n",
" - Gaussian: logistic regression calibration works well as expected\n",
" - Skew-normal: lack of fit\n",
"\n",
"Main source is *Tutorial on logistic-regression calibration and fusion: Converting a score to a likelihood ratio* by GS Morrison\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "do-mtxdB1Vss"
},
"outputs": [],
"source": [
"# Stats\n",
"import numpy as np\n",
"import seaborn as sns\n",
"from scipy.special import logit, expit\n",
"from scipy.stats import norm as f_norm, skewnorm\n",
"\n",
"# Off the shelf stats models\n",
"from sklearn.linear_model import LogisticRegression as lr\n",
"\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"from IPython.display import Image\n",
"from IPython.core.display import HTML"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Zm67U0vf1Vs9"
},
"outputs": [],
"source": [
"# Utils\n",
"def reshape_to_1d(array):\n",
" \"\"\" Reshape [] to [[]], a requirement from sklearn. \"\"\"\n",
" return np.reshape(array,(-1, 1))\n",
"\n",
"def get_logistic_estimates(clf):\n",
" \"\"\" Find the logistic reg parameter estimates \"\"\"\n",
" return clf.intercept_[0], clf.coef_[0][0]\n",
"\n",
"def get_effective_prior(tarN, nontarN):\n",
" return logit(tarN/(tarN nontarN))\n",
"\n",
"def logistic_logodds(x, β_0, β_1):\n",
" return β_0 β_1*x\n",
"\n",
"def log_likelihood_ratio_density(tar_density, nontar_density):\n",
" def func(x):\n",
" return np.log(tar_density(x)/nontar_density(x))\n",
" \n",
" return func\n",
"\n",
"# Data\n",
"def generate_data(nontar_rv, tar_rv, nontarN, tarN):\n",
" \"\"\" Simulate the scores from two classes\n",
" \n",
" Args:\n",
" nontar_rv (scipy.continuous_dist): rv for w0 class\n",
" tar_rv (scipy.continuous_dist): rv for w1 class\n",
" \"\"\"\n",
" w0_sample = nontar_rv.rvs(nontarN)\n",
"\n",
" w1_sample = tar_rv.rvs(tarN)\n",
"\n",
" X = np.concatenate([w0_sample, w1_sample])\n",
"\n",
" y = [0 for d in w0_sample] [1 for d in w1_sample]\n",
" \n",
" return X, y\n",
"\n",
"# Validation\n",
"def logistic_calibration_validation(x, y, test_x, nontarN, tarN, nontar_rv, tar_rv):\n",
" \"\"\" Validate llr from logistic regression using the formula for two gaussians.\n",
"\n",
" Args:\n",
" x (np.array): raw scores\n",
" y (np.array): labels w0 or w1\n",
" test_x (np.array): validation dataset to visually inspect the calibrated scores\n",
" nontar_rv (scipy.continuous_dist): rv for w0\n",
" tar_rv (scipy.continuous_dist): rv for w1\n",
" \"\"\" \n",
" # True llr\n",
" llr_density = log_likelihood_ratio_density(tar_rv.pdf, nontar_rv.pdf)\n",
" \n",
" llr_true = [llr_density(x) for x in test_x]\n",
" \n",
" # Estimated llr\n",
" x_1d = reshape_to_1d(x)\n",
" \n",
" clf = lr(random_state=0).fit(x_1d, y)\n",
" \n",
" β_0, β_1 = get_logistic_estimates(clf)\n",
" \n",
" lo_preds = [logistic_logodds(x, β_0, β_1) for x in test_x]\n",
" \n",
" effective_prior = get_effective_prior(tarN, nontarN)\n",
" \n",
" llr_preds = [(lo - effective_prior) for lo in lo_preds]\n",
" \n",
" return llr_true, llr_preds\n",
"\n",
"\n",
"def plot_true_and_predicted_llr(test_x, llr_true, llr_preds, title):\n",
" (\n",
" sns.lineplot(\n",
" 'x', \n",
" 'value', \n",
" hue='variable', \n",
" data=(\n",
" pd.DataFrame({\n",
" \"x\": test_x, \n",
" \"llr_true\": llr_true, \n",
" \"llr_preds\": llr_preds})\n",
" .melt(\"x\")\n",
" )\n",
" )\n",
" .set_title(title)\n",
" )\n",
"\n",
"# main\n",
"def run(nontar_rv, tar_rv, nontarN, tarN, title):\n",
" X, y = generate_data(nontar_rv, tar_rv, nontarN, tarN)\n",
" \n",
" sns.distplot(X[:nontarN])\n",
" sns.distplot(X[nontarN:])\n",
" plt.title(\"Class-conditional score distributions\")\n",
" plt.show()\n",
"\n",
" # Validation sample scores\n",
" test_x = np.linspace(-1, 1, 15) #np.linspace(-3, 3, 40)\n",
"\n",
" llr_true, llr_preds = logistic_calibration_validation(X, y, test_x, nontarN, tarN, nontar_rv, tar_rv)\n",
" \n",
" plot_true_and_predicted_llr(test_x, llr_true, llr_preds, title)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "6fB-NYZj1VtF",
"outputId": "fb3c2a39-24ad-494f-8802-aee06ef3b26b"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1 /AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy WH4yJAAAgAElEQVR4nO3deXhbZ5X48e RLO/7bsd2HDv73sZJmqZtukJDgdKBQil7KdCBMvxgZthhYDqdYRkYGCh0ylKWoXQKbaF035fscdLsiRPb8Rrv ypb0vv748qp6niRbUnXuno/z NHlnR175FkHb86911EKYWmaZoW/mxmB6BpmqYFhk7omqZpFqETuqZpmkXohK5pmmYROqFrmqZZhE7omqZpFqET jwhIt8Skf81O45AE5EaEbnW /tXReSXU2z7ARF5NgQx/UZE/i3YxwkWEVEistj7 70i8o0A7bdIRPpFxO69/rKI3B6IfXv395SIfCRQ 9MupBN6CInIrSJS7v3QNHn/wC8zO65QUUr9u1LqdgARKfYmpiif / glHqLeRGGH6XUHUqpu6bbzvcf6xT7qlNKJSql3HONa6IGilJqu1Lqt3PdtzY5ndBDRES APwI HcgBygCfgbcaGZcWmj5/gObT ZrXNrM6IQeAiKSAvwr8Bml1CNKqQGl1KhS6m9KqX e5DF/EpFmEekRkVdFZJXPfW8TkRMi0icijSLyT97bM0XkcRHpFpFOEXlNRCZ8j0XE7i2BVHn3c0BECr33XSoi 73H3i8il/o87mURuUtEdnof96yIZPrc/yERqRWRDhH52rhj rbaXvVednu/sWwRkY KyA6f7ecSx6Sv31REZLGIvOJ9XLuI/J/PfatE5Dnva9siIl/13h4jIj8SkXPenx JSIz3vitFpEFEviQizcD9ImITkS97X/sOEXlIRNKniOmfvd/ozonIbePuO18 muz9F5HfYzQg/uZ9rb/o8w3p4yJSB7w40bcmoFRE9nlfj7 OxTn2vMbFUiMi14rI9cBXgfd5j3fY5z0b 4ZmE5Gve/9WWkXkd2J8Tny/vX1EROq878PXfI6zSYxvur3e9 GH/ry3kUAn9NDYAsQCj87gMU8BS4Bs4CDwB5/7fgV8SimVBKwGXvTe/o9AA5CF8S3gq8Bkczt8AXg/8DYgGbgNGPR YJ8A/hvIAH4IPCEiGT6PvRX4mDe2aGDsH8pK4OfAh4B87 MLJjn Fd7LVO/X/N2 d84lDq pXr p3AU8C6R5Y/ JN54k4Hngae9zWwy84H3M14BLgPXAOmAT8HWffeYC6cBC4JPAPwDvArZ599UF3DNRMN7k E/Add7nM1XZZML3Xyn1IaAOeIf3tf6ez2O2ASuAt06yzw9j/G3kAy6M92NKSqmnMb6J/p/3eOsm2Oyj3p rgBIgEfjpuG0uA5YB1wDfFJEV3tt/DPxYKZUMlAIPTRdTpNAJPTQygHallMvfByilfq2U6lNKOYFvAevGWjDAKLBSRJKVUl1KqYM t cBC73fAF5Tk0/WczvwdaVUhTIcVkp1ADcAZ5RSv1dKuZRSfwROAe/weez9SqnTSqkhjA/Teu/t7wEeV0q96o37G4DH3 c8zlzimO71m8ooRuLNV0oNK6XGvjG8HWhWSv3Ae3ufUmqv974PAP qlGpVSrUB38b4pzbGA/yLUsrpjfVTwNeUUg0 8b1HJi57vNf7PI8ppQa8204Vu7/v/5hveb8xDk1y/ 99jv0N4L3iPWk6Rx8AfqiUqlZK9QNfAW4Z9xp8Wyk1pJQ6DBzG GcJxvNcLCKZSql pdSeAMRjCTqhh0YHkDnJB/YCYpRDvuP9St4L1HjvGispvBujZV3rLQ9s8d7 faASeFZEqkXky979fcD71bdfRJ7yblsIVE1w HygdtxttcACn vNPr8PYrSuxh5bP3aHNwl0 POcAxmHH6/fVL4ICLBPRI77lDgme70mirXWe9uYNqXUsM/1hcCj3tJIN3AScGO0qifad73P9fGvia8J3/9p1M/g/lrAgX v43Qmes2iePNrMNnf2ceBpcApMUpxbw9APJagE3po7AaGMb5m NWjJOl1wIpQLH3dgFQSu1XSt2IUU74C96vnN5W4z8qpUowWrJfEJFrvL1HEr0/2737qsf4ujreOYyE46sIaPQj7iaMxGcEKxKP8e1kItO1HOcSx5Sv31SUUs1KqU8opfIxWtI/E6OL4GSv10SxFnlvO7/bcdvXA9uVUqk P7FKqYme25teU J4t9wvd/khgmi2288cceBdqBASB 7A5vqz1rBvud6DVzAS3TPA6l1Bml1Psx/v6/C/xZRBKme1wk0Ak9BJRSPcA3gXtE5F0iEi8iDhHZLiLfm AhSYATo3Ubj1GPBEBEor0t7hSl1CjQi9G6Q0TeLsZJPfG5fbIuaL8E7hKRJWJY661PPwksFaOLZZSIvA9YCTzux1P9M/B2EblMRKIxTgRP9jfWhlGKKJnk/rnEMenrNx0RuVlExur XRiJye09bq6I/D8xToImichm73Z/BL4uIllinJj9JjDVmIJ7gbtFZKH3mFkiMllvp4eAj4rISu8/yH ZIvap3v8WJn tp/JBn2P/K/Bnb7fG00CsiNwgIg6McwYxPo9rAYplkpPyGK/Z50VkkYgk8kbNfdqypIh8UESylFIeoNt785y7WlqBTughopT6IcaJyK9jJLN64E6MFvZ4v8P4CtoInADG1wg/BNR4ywl3AB/03r4E48RdP8a3gp8ppV6eJKQfYiSLZzE /L8C4rx19LdjnGDrwChBvF0p1e7HczwOfAZ4AKNl2YVxkm6ibQeBu4Gd3tLDJePun3UcTP/6TWUjsFdE oHHgM8ppc4qpfowTky A6MUcAbjhB7AvwHlwBHgKMZJ2KkGLv3Yu 9nRaTPG9/miTZUSj2F0d31RYxyyosTbec11fv/Hxj/dLrF2yvKT78HfoPxnGMxTuiONVI jdEwaMRosfu 13/yXnaIyEEu9Gvvvl8FzmJ8g/2snzFdDxz3vkc/Bm4ZV9KKWDL9ORNN0zQtHOgWuqZpmkXohK5pmmYROqFrmqZZhE7omqZpFmHahDyZmZmquLjYrMNrmqaFpQMHDrQrpbImus 0hF5cXEx5eblZh9c0TQtLIjLpaGFdctE0TbMIndA1TdMsQid0TdM0i9AJXdM0zSJ0Qtc0TbMIndA1TdMsQid0TdM0i9AJXdM0zSJ0Qtc0TbMI00aKatp4D ytm/L WzdPuvqapmnoFrqmaZpl6ISuaZpmEbrkomnzTfn9U99f9rHQxKGFHd1C1zRNswid0DVN0yxCJ3RN0zSL0Ald0zTNInRC1zRNswid0DVN0yxCd1vUtECarssh6G6HWtDoFrqmaZpF JXQReR6EakQkUoR fIE96eIyN9E5LCIHBcR3QTRNH85 6CjCpqPgsdjdjRaGJu25CIiduAe4DqgAdgvIo8ppU74bPYZ4IRS6h0ikgVUiMgflFIjQYla06zA2Qcv/QfsvReU27gtYwkUlEHBRhD9BVqbGX9q6JuASqVUNYCIPAjcCPgmdAUkiYgAiUAn4ApwrJpmDeX3Q38L7PkZDPdC4SbIWAweN9S8Bof/CF01sOZmndS1GfEnoS8A6n2uNwCbx23zU Ax4ByQBLxPKaW/O0agqabA1dPfeg33GK1yjxu2fg7Sit 4r3AzVDwJlc B2GH1u0HEtFC18OLPv/ J/prUuOtvBQ4B cB64KciknzBjkQ KSLlIlLe1tY242A1Ley5R2Df/8DIIGz61JuTORjJe9nboOQqqN0B9XtNCVMLT/4k9Aag0Od6AUZL3NfHgEeUoRI4CywfvyOl1H1KqTKlVFlWVtZsY9a08HX6Geg9Bxs AqmFE28jAiveAeklcPIxo9auaX7wJ6HvB5aIyCIRiQZuwSiv KoDrgEQkRxgGVAdyEA1Lez1noPql4yaefbKqbcVG6x5L7iccOIvoYlPC3vTJnSllAu4E3gGOAk8pJQ6LiJ3iMgd3s3uAi4VkaPAC8CXlFLtwQpa08KO8sDRh8ARBytu9O8xSbmw FpoPACdZ4Mbn2YJfo0UVUo9CTw57rZ7fX4/B7wlsKFpmoW0HDN6rqy9BaIT/H9c6dVQswOqnof0TwQtPM0adJ8obV7weBRtfU6q2vrpGhzBo8afdw9jSsHpZyEhy hfPhNRMbDocmg5Dr1NwYlPsww9l4tmqgGni3tfqeL3e2rpHhw9f3tSbBRXLcumrDiNKFuYtztaT0BvA6x7P9jsM3988eVQ9SJUvQAXfTDw8WmWoRO6Zpo91R189o v09bnZPvqXOIcdlLjo kYcHKovpvHDp9j79kOPrKlmNT4aLPDnR2l4MwzEJ8BC8pmt4/oBCjaYgw6Wn5DYOPTLCXMmz5auHriSBMf/tU kmOjeOTTl/LzD26grDidxdmJbF6UwScvL GDmxfSPTjKva9U0dQzZHbIs9NZDd11Ri18Nq3zMYuuME6sNuwPXGya5eiEroXc08eaufOPB1lbkMLDf38pFxelXbCNiLAyP5lPXVEKwK931tDQNRjqUOeudofRs2WmtfPx4jOMeV7q9 oJvLRJ6YSuhdTJpl6 8NAh1hWk8r 3b562lJKbEsttly3C7fFw 2/LGXCG0RRBwz3QdBgKNoE9ACWjwk0w2AF1u a L82SdELXQqZnaJRP/K6cpNgo7vvQBmId/pUgspNief/GIs609vPFh4 gwqUHTN1uo0yy8LLA7C9vndHr5fU/BGZ/muXohK6FzHeeOklTzzD3fnAD2cmxM3rskpwkvnDdUp440sRjh8fPPDEPedxGQs9aDokBmubCHg35FxsjR/V0ANoEdELXQqK6vZ8/7qvn45ct4qIJaub uGNbKRsWpvGNvxyb/ydJ2yqMkkvRpYHd74IyGB005oTRtHF0QteCzuXx8JfXGylMj Pz1y6d9X7sNuEHN69j1K34 qPHAhhhEDTsM7ob5kwzZ8tMpS CxFw48dfA7lezBJ3QtaArr mivX Eb79zFXHRc i6BxRnJvD565bwwqlWnjvREqAIA2xkAFqOGq1pW4CHeojNmInxzHPGcTTNh07oWlCNuj28XNHKwvR4rlqWHZB9fmzrIpbmJPKtx44zNOIOyD4D6tzrRg29cFNw9r/yRnANGUld03zohK4F1d6znfQOu7huZQ4SoJV3HHYbd924msbuIX7 cmVA9hlQ9fsgeYHxEwwLL4X4TD2trnYBndC1oBl1e3jldBulWQmUZCUGdN bSzJ4x7p87nuten6dIO1vgZ66uQ8kmorNbpRdTj8Lo/PouWum0wldC5ojDT0MOF1cGaBSy3hffOsyPB74wbOng7L/WWk8AIjRvTBYyu83ujCODsCz3zSu /5oEUsndC0olFLsrm4nOymGkswZzP89A4Xp8XxsazEPH2zg LmeoBxjRpSCxoOQuRRiL1hSN7AyFhtJvfVEcI jhRWd0LWgqOsc5Fz3MFtKMwJWO5/Ip69aTEqcg 8/UxG0Y/it8SAMtsOCILbOx9gdkLnESOjhMnJWCzqd0LWg2F3dQazDxvrC1KAeJyXOwR3bSnm5oo39NZ1BPda0jj5kdFPMXRua42WvhKFOo26vaeiErgXBoNPF8cZeLi5KIyZqbv3O/fGRLcVkJcXw/acrzJvnxeOGY49A9ipjdsVQGFtouvVkaI6nzXs6oWsBd/RcD26lJpwWNxjiou189urF7Kvp5LUzJq1NXrsTBloh/6LQHTMuDZLydB1dO08ndC3gXq/rJjsphryUmU3ANRe3bCwiPyWW/37hjDmt9ON/AUd84If6Tyd7BXRWwehwaI rzUt6CTotoDr6ndR1DvLWVbkXnAx9YG9d0I4bHWXjjitL eZfj7O7uoNLSzODdqwLuF1w8jFY tbAzHs E9mrjPVG2yuM6XW1iKZb6FpAHarvRoB1BSkhP/Z7ywrJTorhv184E9oD1 6EgTZY a7QHhcgrRiiYnXZRQN0C10LIKUUhxt6KM5MCMqiztO18G/dXMSntpVy1 MnKK/ppKw4PeAxTOiEt9yy5C1w5P9Cc8wxNrsx53rrSaP7YhC7iGrzn26hawFT2dpPe7 TNQtC3zofc umItLiHdz3anVoDuh2wQlvuSU6PjTHHC97JTh7obfRnONr84ZuoWsB8/SxZgBW5gV5lOQkxlrw6wvTeO5EC//9/Bkyk2LO33/r5qLAH7R2pzGYaNVNgd 3v7JXGJetJyClwLw4NNPpFroWME8fb6YwLY7kOIepcVxSko7dJuyoDEEXxuOPGuWWxdcF/1iTiUmClEJdR9d0QtcCo75zkOPnelmVb165ZUxSrIOLilI5WNdFv9MVvAO5XXDyb7D0evPKLWOyV0JXrV70IsLphK4FxDPHjXLLqnxzyi3jbS3NxOVRHAjmdAC1O7zlFhN6t4yXvRxQRvdFLWLphK4FxLMnWliWk0RGYsz0G4dAdnIsJVkJ7K3pxBOsgUZjg4nMLLeMSSkyphxo0wk9kumTotqc9QyNcqC2i09dUWJ2KG9yyaIMHthXR0VzHyvykv3q9ug3j9tbbjGxd4svm92YtrftlO6 GMF0C12bsx1n2nF7FFctD85CFrO1Ii Z5Ngo9lR3BH7n9fuMcsuKdwR 37OVuRyGe4ykrkUkndC1OXupopWUOAcXBXmq3Jmy24SNi9I509pPR78zsDuveAJsjvlRbhmTtcy4rHrR3Dg00 iErs2Jx6N45XQbVyzNIso //6cNhSlIcDBuu7A7VQpOPUELLo8 CsTzUR8OiRkQ ULZkeimWT fQK1sHKiqZe2PidXLcsyO5QJpcZHszg7kdfrugJ3crStAjqrYdnbArO/QMpabgx20rMvRiSd0LU5eelUKyJwxdL5mdABLl6YRvfQKNVtAeqjXfGEcTlfE7prGOp2mR2JZgKd0LU5efVMG2sWpJA5T7orTmRlXjKxDhsH67oCs8NTTxoLWaQsCMz Aimj1JjCV5ddIpJO6NqsDThdvF7XzdbFIZx7fBYcdhvrClI51tjD8Kh7bjvra4bGclh2Q2CCC7SoGCi6BKpeMjsSzQQ6oWuztu9sJy6PYmsoF5OYpfWFqbg8ipNNvXPbUcVTxuXyeVhuGVN6NbQeh94msyPRQsyvhC4i14tIhYhUisiXJ9nmShE5JCLHReSVwIapzUc7K9uJjrJRVhyatUPnojA9ntQ4B0caeua2o4onIXXhGws0z0el1xiX1bqVHmmmHSkqInbgHuA6oAHYLyKPKaVO GyTCvwMuF4pVSci82uEiRYwvqMtHz/SREFaHI8cnP/zcNtEWFOQws7KdgZHXMRHz2KQtLMfql BjR f3yMxc1a/0X1x/a1mR6OFkD8t9E1ApVKqWik1AjwI3Dhum1uBR5RSdQBKqdbAhqnNN/1OF829wyzOSjQ7FL tLUjFo D4uVmWXapeALdzfvZu8WWzQelVRgvd4zE7Gi2E/EnoC4B6n sN3tt8LQXSRORlETkgIh eaEci8kkRKReR8ra2ttlFrM0L1W39AJSGUULPT4klIyGaww2zHGR06kmIS4OiLYENLBhKr4HBDmg bHYkWgj5871zou W40doRAEbgGuAOGC3iOxRSp1 04OUug 4D6CsrCxIU BpoVDV1k sw8aCtDizQ/GbeMsur1S00e90kRgzg7KLxw1nnoX0Unj998ELMlBKrzIuK18wulhqEcGfFnoDUOhzvQA4N8E2TyulBpRS7cCrwLrAhKjNR5Wt/SzKTMQ2n2vJE1iVn4ICTs20t8u512Goc36fDPWVmA25a3T3xQjjT0LfDywRkUUiEg3cAjw2bpu/ApeLSJSIxAObgZOBDVWbLzoHRugaHGVxVoLZocxYfkosqXEOTsw0oZ95DpA3JsAKB6XXQP0ecPaZHYkWItMmdKWUC7gTeAYjST klDouIneIyB3ebU4CTwNHgH3AL5VSx4IXtmamqjCsn48REVbkJ1PZ2o/TNYNBRpXPw4INEB1G/8RKrwaPC86 ZnYkWoj41Q9dKfWkUmqpUqpUKXW397Z7lVL3 mzzfaXUSqXUaqXUj4IVsGa ytZ kmKjyEqav8P9p7IqLxmXR3G6pd /Bwx0QOMBWDKPpsr1R9ElxopKejrdiKFHimoz4lGK6rZ FmclImFWPx zMCOB Gg7J875Ocio iVAweJrgxpXwEXFQPFlRndLLSLohK7NSEvvMAMj7rAst4yx24QVuclUtPTh9vjR2erMcxCXHp69RUqvMab67TxrdiRaCOg1RbUZqWr11s zwzehAyzLTeJAXRd1nYMsypyiLq6UUbIovcpYtzMclN//xu/D3j73L90NC7cav5d9LPQxaSGhW jajFS1DZCZGENKnMPsUOZkcXYiNoHTLdP0AGk9CQOtUHJVaAILtIRsYzBUq15nNBLoFrrmt1G3h7PtA1xUNL/WDp2NWIedhRkJVDT38dZVuW/c4du6Bah 2bgcaLvwvnAgYix6ce51Y3BUuHzL0GZFt9A1vx2q72bE7Qnr rmvZTlJNPcO0z04MvlG7achIcto5YarsVWMumvNjkQLMp3QNb/trGxHCM/ 5xNZlpsEMHn3RY8bOiohc2kIowqCjCWAQJsuu1idTuia33ZVdpCfGkdctDW tmcnxZAa76Bisjp6dy24R8I/oUfHQ9pCndAjgE7oml8GnC4O1nVZpnUOxqjRZTlJVLX243JPMM1sWwUg3hZumMtcBt31MBKghbK1eUkndM0v 2qM5eYWh3l3xfGW5SQx4vZwtmOCRNd GlIKjRZuuMteDijjOWmWpRO65pdd3uXmFmZYILn5KMlKJMomnG4eV3Zxj0B3HWQuNiewQEspAkecLrtYnE7oml92VnawoSgNh91afzLRUTZKshIurKN31YByQ7pFErrNDhlLjYSu9FIEVmWtT6cWFB39Tk409XLZkkyzQwmKpTlJtPePUNPuU3bpqAQE0ktMiyvgspbDcI/33IBmRTqha9PaXd0BwKWlGSZHEhzLcozuiy9X CyF21EFKQXgiDUpqiAYm8tdT9ZlWTqha9PaWdlBUkwUaxakmB1KUGQkxpCZGMOLFd51bt2jRpfFjFJzAwu0 HRjKgA9na5l6YSuTWtnZTuXlGYQZbH6ua lOYnsre5g2I1xMtTjsk793FfWcqjZCaPDZkeiBYF1P6FaQNR3DlLXOchWi5ZbxizNScLp8rC3Ldqa9fMxWcvANQR1u8yORAsCndC1Ke2qagdg62JrnhAdsygzgZgoG680R0NnFSTnWaP/ XgZi8Hm0GUXi9IJXZvSjsoOspNiLDegaDyH3cbmkgx2NtuMxSCsWG4BYxWjokugUid0K9IJXZuUUordVe1sXZwZtsvNzcS2pVkkDNSBZ9R6J0R9Lb4GWo9DX7PZkWgBphO6NqmKlj7a 0cs211xvCuXZXGJ7aRxJd3CCb30GuNSl10sRyd0bVI7zkRG/XxMSWYC2xwnOGfPhxgLl5hyVhtzvFfq/uhWoxO6NqldVR2UZCaQnxpndighIR436 U0r46uYGSCyRctw2aD0quh iXwWPmJRh6d0LUJjbo97K3u4NLFkVFuAaDpMDHKyQ7XSg52hPeaqdMqvRoGO6D5sNmRaAGkE7o2oSMN3QyMuNlaGhnlFgBqdwJQrpbzcnO0ycEEWenVxqWuo1uKXiRae5MH9tYB8OKpVgRo7Bo6f5vl1e6EhCyKkxJ4pVn48hoLLwaRmA25a4zui5f/o9nRaAGiW jahKrb slLiSU JjL 54tyQ 1uyFjMtpwRTvY4aBmy Mej9Gqo3wPOSZbg08JOZHxatRkZdXuo6xzkkpLIqZ n9p4GZw kl7ItcYTvHoNXW6K5udiCc56U329cukeNOWue/5bR82VM2cdMCUubO4s3QbTZqOscxOVRlGYlmB1KyGR3lhu/ZJSyIsVFVqzbmAbAytJKwB4NrXoVI6vQCV27QHVbPzaB4owISuhd5ZC6EOLSEIFtOSO81hKN28qL 9ijjLld2vWCF1ahE7p2gaq2ARakxhHjsJsdSmgoD9mdB6D4svM3bcsdoWfUxuFOi1cls5bBQJvRhVELezqha2/iHHXT0DVIaZaFR0qOk9JfScxoDyzcev62y7JHsKF4pTnGxMhCIGu5cakXj7YEizc/tJmq6RjEo6AkghJ6jrd /tfuReS27z5/e2lCIk/U2bg0vpPNi9LNCi 4ErIhLs1YZ9TnH5oWnnQLXXuT6rZ 7DZhYYYF5wKfRHZnOQOxuQzELXjT7euS 6kaiKXPZeGPiYjRSm8/DR632dFoc2Thv1RtNqra ylKj8dh4eXm3kQpsjsP0JpeZiQ3H tTBlAIR3otfnI4cxm4ho11VLWwFiGfWs0f3YMjNHUPUxJB3RVT quIHemkJX3TBfeVxg TFOXi9R6Ll58ylwKi6 gWoBO6dt7es50ooDTT4gnMR07nPgBaMjZecJ9NYH3yAId6EqzdfTE6HlKLdEK3AJ3QtfN2V3XgsAsF6ZExXS5Adkc5A7F5F9TPx2xI6afPHcWhDov3H8haDt31MGLh WsigE7o2nm7qtopzkggyhYhfxbKQ3bnfqN1PskSe2uTB7CjeKHJ4t0Xs5cDyjg5qoUtvz65InK9iFSISKWIfHmK7TaKiFtE3hO4ELVQaOtzcrqlP6K6K6b0VxI72k1L oXlljEJUR6WJQ7yotX7o6cUQVSs0X1RC1vTfo8UETtwD3Ad0ADsF5HHlFInJtjuu8AzwQhUC67d1cZIQavP31Ja96fzv d07AUgdrjtTbePd3HqAP/bkEDjoI0F8RZd4cdmN3q7tJ0CpSb9xqLNb/600DcBlUqpaqXUCPAgcOME230WeBhoDWB8WojsrmonKTaKvJTIqZ8nD9Qy7EhlJDp1yu02pPQD8KLVyy5Zy2C4W7fSw5g/CX0BUO9zvcF723kisgC4Cbh3qh2JyCdFpFxEytva2mYaqxZEu6o62LwoA7stQlpmSpE0WEtvQvG0m bFjFCc6OLFJovPvjg2DYBexShs ZPQJ/qEj3hkl0EAACAASURBVO/E9SPgS0qpKYeaKaXuU0qVKaXKsrKy/I1RC7LG7iFqOwa5tDRy5j Pd7bgcA/Rl7Bw2m1F4KrcEXa2RjPoCkFwZolPN6YCqHrB7Ei0WfInoTcAhT7XC4Bz47YpAx4UkRrgPcDPRORdAYlQC7rdVUb9PJIWhE4eqAGgN77Yr 2vyXMy4hF2tVq8lZ69As6 Bs5 syPRZsGfhL4fWCIii0QkGrgFeMx3A6XUIqVUsVKqGPgz8Gml1F8CHq0WFLuq2klPiGZpdpLZoYRM0kAtw440RqJT/Np U9YoCVEe63dfzFkNbidUv2R2JNosTJvQlVIu4E6M3isngYeUUsdF5A4RuSPYAWrBpZRid1UHW0oysEVM/dxD8oB/9fMx0Ta4ImeEl5qjUVYeNZpeArGpUPGU2ZFos DX8Del1JPAk Num/AEqFLqo3MPSwuVmo5BmnqG2RJJ9fPhFqI8w/T6UT/3dVXeCE81xnKiJ4pVqRYtptvssOQtcPppY/ZFW4QscmIRETIkUJvMrqp2gIg6ITpWP bQQsd4KpcJ4D1e7ss226sYFS/z xItBmy AQV2ngP7K170/UH99WTHBvF7qoO9lR3mhRVaCUP1DAcnc6II9nvx w9a7w2i MT WuNnU2xb36tLLUAxuJrwOaAiidh4Razo9FmQLfQI5hSiuo2Y7i/RMjIQPG4SR6soSehZFaPvzjVWPSiZ9TCpYjYFGN9VV1HDzs6oUewlj4nAyNuyw/395U0VIfdM0pPYumsHn9RSj8K4ZDVF71Y9jboOAPtZ8yORJsBndAjWHWb0dc4sibkqsaDbUY9XHwtinOS5hjlQLfFX7Nl241L3UoPKzqhR7CqtgHSE6JJi7f4ST4fKf1V9McX4LbPrj 5CFycMsCR3gRcFp2nC4DUQshdY9TRtbChE3qE8ijF2fZ SjItXjrwEePsIGG4edblljEXp/Qz5LFzot/iC2kvexvU74WBdrMj0fykE3qEOtc9xPCoJ6LKLXntuwHmnNBXJw3gEA8Hrb7W6LLtoDxw5lmzI9H8pBN6hKpuM5Yai6QFofPadzFqj2MgNndO 4m1K9YkD3KgO9Hao0bz1kNSHpx6wuxIND/phB6hqtv7yUqKITnWYXYoISHKTV7ba/QkLgaZ 5/9hpQ WkeiaRi28PkHEVjxDqh8Xk/WFSZ0Qo9ALo HmvbBiOqumNF9hNjRbrqSlgZkfxenGN9wyq3e22XVTeAaNqYC0OY9ndAjUGPXECNuDyWZFk9GPha0voxHouZcPx THu2iJH7I nX0wksgMReOP2p2JJofdEKPQFVt/QhEVA XBa2v0pq Abc9NmD73JDSz5mBOGuPGrXZYNW74Mxz4OwzOxptGjqhR6CqtgFyU2KJj4mMqXwSBhtI7a kMeuKgO53Q6oxatTyrfRVNxlzpFfosst8pxN6hBlxeajrHKQ0grorLmh9BYDG7CsDut/iOCcZjlEOWD2hF2yCpHw49rDZkWjT0Ak9wtR0DOD2KBZnWzwJ ShofYmehEX0JxQFdL8ixmRdR3oTGJ5yNd0wZ7PBmndD5XN6kNE8pxN6hKls7cduE4ozIqN HjPSRXZnOfW51wZl/xtS nF6bOy2 lqj624FjwuO/tnsSLQp6IQeYara lmYHk90VGS89QtaXsKm3NTnBCehr0oaJMbm4XmrL3qRsxLy1sHhB8yORJtCZHyqNQDa pw09QxHVLmlqOU5 uMW0JW8Iij7j7Yp1iYP8GJTjLVHjYLRSm86DC0nzI5Em4RO6BFkbLm5SEnojtFectr3GOWWIC7gUZbST9OQnePdFu81tOY9YIvSrfR5zOJ/gZqvHWfaiXPYyU NMzuUkFjQ gp25QpauWXMRSn9CIrnm6JZnWaBxaPL75/8vqzlcOC3kFo8 QLSZR8LSlja9HQLPUIopdhR2U5JVgK2CFlubmHTMwzGZNOeujaox0lxuLk4Y5QXmmY3x3pYKdgIzl5oP212JNoEdEKPENXtAxFVP48Z6SKvfSc1 W8LyGRc07kmb4SjXQ6ahyz kcpeBY54aNhndiTaBCz 16eN2XHGqJ8vyU4yOZLQKGp6BptyUZP/9pAc79o8JwAvWL23iz0K8i G5mMwOmR2NNo4OqFHiB2V7RSmx5GeYPGE41V87gm6ExfTHaDZFaezJNlNUYKbF85FQNmlcBN4RuHcIbMj0cbRCT0CuNwe9lR1cNniLLNDCYmEwXqyug9Rk39DUHu3 BKBa/Kc7GiNZtAC50WnlFJozMBYv8fsSLRxdEKPAIcbeuhzurh8SabZoYRE8TljYeOa/BtCetzr8p2MeIQdVh81KgJFW6C7FnoazI5G86G7LUaAHWfaEYEtJRk8dazZ7HCCqrT2IZbWPkhvfBF5bTtCeuyNmaMkOTw8fy6Gt SPhPTYIVe4EU49DrU7Ye37zI5G89It9AjwyulW1i5IIS0C6ufxw03EjbTTnhLcrooTcdjgytwRXmyKxmP1UaOOeFhwMTQegNFhs6PRvHRCt7j2fiev13dz9fIcs0MJicyeo3jETmdKcIb6T faPCftTjuHOyPgy /CreAegcb9ZkeieemEbnEvV7ShFFyzItvsUIJOlJuMnuN0Jy7BbTdnNOyVuSPYRfF8JAwySi0yTpDW7sT6E9mEB53QLe7FUy3kJMewKj/Z7FCCLqdjL9GuftpT15gWQ0q0YmPmKM9HQvdFMFrpfc3QWW12JBo6oVvaiMvDq6fbuXp5DhIBw/0XNf4Nly2G7sQlpsbxlnwnFb1RVPdZeK3RMfkXQVSs0UrXTKcTuoXtO9tJv9PFNcutX25xjPZS2PwcHSlrUDZz69fXLzBGjT7VGAGt9KgYY36XpsN6Eel5QCd0C3v ZAsxUTa2LrZ //OFTU8T5XHSlrbe7FDIj/ewPn2UpyMhoYNRdlFuqN9rdiQRTyd0i/J4FE8ebeLKZVnERVv/q39pw6N0JS1lIDbP7FAA2L7AydEuB/UDEfARS8qFjCVQswM8Vl5cdf6LgL 2yFRe20Vrn5Mb1uabHUrQpfSdJqPnGNUFN4VsqP90ti8w mY/Eymt9EXbYLjbKL1optEJ3aKeOHKOmChbRNTPSxsexS1RIR/qP5WiRA8rU0cjo44Oxpqj8Zlw9mXdhdFEOqFbkNujePJYM1ctyyYhxtoDXGyeUYobH6cx5yqc0Wlmh/Mm2xc4OdARbf050sGYc37RNuiug3o9V7pZ/PpLE5HrRaRCRCpF5MsT3P8BETni/dklIusCH6rmr/01nbT1Oblh7fyoJwfTgtaXiR3tpqrgJrNDucB2b2 XiCm7FG4CRxzsucfsSCLWtM03EbED9wDXAQ3AfhF5TCnlu/T3WWCbUqpLRLYD9wGbgxGwNr2/HmokzmHnaguWW0rr/vSm68tqH2AkKon4wXMX3BdKe892Tnh7QWwi/1dp4yOLQxyQGaJioHALnPwbdNVC2kKzI4o4/rTQNwGVSqlqpdQI8CBwo 8GSqldSqku79U9QEFgw9T8NeB08dihc9ywNs/y5Zbo0V5S qtoS10XkmXmZmNzWh8n PpcM6Pk7VBt hyQGDffWZHEpH8 RQsAOp9rjd4b5vMx4GnJrpDRD4pIuUiUt7W1uZ/lJrfnjjaxMCIm/dtLDQ7lKDL7D6MoGhLNb/v WQ2pfahEJ6NlLJLXBqsvBEO/k4PNDKBPwl9oqbFhKexReQqjIT pYnuV0rdp5QqU0qVZWVFxuo5ofbQ/npKshIoWzi/ThAGnPKQ3XWQnoRinDHpZkczqYVxTnJjRniiIdbsUEJny2fA2QsHf292JBHHn4TeAPg29wqAc M3EpG1wC BG5VSHYEJT5uJytY ymu7uGVjoeXnbkntryRmtIfWtDKzQ5mSCGxN72VXq4OWSOjtAlBQBkWXwu6fgstpdjQRxZ8i635giYgsAhqBW4BbfTcQkSLgEeBDSqnTAY9S88tvd9VitwlKwQN768wOJ6iyOw8wEpVAV9Iys0OZ1mXpvTzclMnf6mO4femQ2eGExhX/BP/7d3DoASj7mNnRRIxpmwxKKRdwJ/AMcBJ4SCl1XETuEJE7vJt9E8gAfiYih0SkPGgRaxNq73fyUHk9FxWmkhTrMDucoIoe6Sa1/wxtqRehbPN/WoP82BHWpY3ySF0ElV1Kr4b8i2HHD8E9anY0EcOv74BKqSeVUkuVUqVKqbu9t92rlLrX /vtSqk0pdR678/8/h5sQb/dVcOI28PlS6x/biK763UAWtMuNjkS/72raJgT3Q4qeub/P6CAEIFtXzQGGh01rztppImQop61DThd/G53LW9ZmUNWkrV7U4hyk9X9Ot2JSxiJTjU7HL 9vXAYuygejaRW tLrIWcNvPYDPWlXiOiEbgG/3nGWnqFR7thWanYoQZfad5poVz t6RvMDmVGsmIVV aO8OeaWEY9ZkcTIiJGLb2jEk78xexoIoJO6GGupXeYn79SxfbVuVxUZPGuikBOZzlORzLdieE39PL9i4Zod9p5oSna7FBCZ8U7IXMZvPqf4ImU/2Tm0Qk9zP3nMxW43Iovb19udihBlzRQS8rAWaN2Pk9Hhk7lytwRcuPc/LHanAWsTWGzweX/CK0noOIJs6OxvPD7VGjnHarv5s8HG/jo1mIWZiSYHU7QLal7EA822lIvMjuUWYmywXuLh3m1JZqGSFj4Yszqd0PGYnjxbl1LD7II quylqERN1946BB5ybHceXX4lR9myjHaR2n9o3SmrGLUkWR2OLP23mKjH/qDZyOolW6Pgqu/AW0n4fCDZkdjaTqhh6nvPn2K6rYBvn/zOpIt3u8coLThERzuAZoywnsSz4IED9fmj/CH6jiGI6mxuvJGo1/6S/8Oo8NmR2NZOqGHoedOtPCbXTV89NLiiFgAWjwultY QEvaBgbjwn9JvduXDNI1YuOR2gjqwigC130behtg771mR2NZ1p5f1YIqW/v4/P8dYs2ClIg4EQpQ0PICiUPnOLjii8Q4J553PJxsyhxlTdoovzoTzy2LhrFZbdqd8vsnvy97ldHjZd37ISkndDFFCJ3Q56HJ5mEZdLr4 StVxDps/M HNhDriIBRh0qxuuoX9CQU05h9JSX1j5gd0ZyJGK30z 1L4aWmaK7JHzE7pNBZ S549XvwwrfhXT8zOxrL0Qk9TDhdbn67u4aeoVEe/OQl5KdGxkm1Ba2vkNZXwe61d6MkfP BjV/RKFNBVnQ8/3EohoThZi4pmb9TAAdUYhZc8vew67 h7ONQEF4DxOY7XUMPAy6Phwf21tHQNcQtG4soK46QD79SrKq6j/64BdTkbTc7moCKErgpr53KwThe77V l9M3ueKfITEXHv8cuF1mR2MpOqHPcx6lePhAA2da 7npogWszE82O6SQyWvfSWbPUY6XfBxls15Pnm0ZPWRHj/DQuSzUhEvGWFRsMmz/LjQfhb0/NzsaS9EJfR5TSvHE0SYON/Tw1pU5kdMyx5iEa33Fj iPW8DZBTdO/4AwFCXw7rwOzg7G8nSkLFE3ZuWNsHS70Y2xq9bsaCxDJ/R57JXTbeyu6mBraQZXLLX tLi ihsfJ62vgsNLP4fHbt25Ty7P6KEwdpi7jyRGVr90EbjhP40pHB67U8/zEiA6oc9T 2s6efZEC sLU9m Js/yS8r5sruHWXvmJ3SkrKY2761mhxNUdoGPFrbSMGjnF6fjzQ4ntFIK4K13w9lXYf8vzY7GEnQvl3nodEsffz3UyNKcRN59cQG2ccnc6svLraz6JQnDLexe x9hOQnXTK1OHmT7gmHuOZXATUXDFCREUGv14o/AycfhuW8aqxxlWn8ai2Cy/qclzJw418sD rISY7l/RuLsFtu1MnUVp/ KauqfkFbylqSBmoorfvTm36s6qtr 7Gh MqB5Mg6QSoC7/wJOGLh4dv0otJzpBP6PNLSO8zHf7uf2CgbH95STEwkDBzyIcpNybm/4bbHUpf7FrPDCanCBA9fWTvAa63R/PFsBE0JAJCcBzfeA02H4flvmx1NWNMJfZ4YcLq47Tf76R0a5SOXFpMSZ71uetNZVXkfiUPnqM19K66oCKsnAx8oGWJr9gh3H0mkpj y/pmz/AbY9CnYcw c0vOmz5auoc8Dbo/iH/74OiebevnVRzbS1BN5s9Hltu1iTeXPaU9ZQ0fKarPDMYVN4HtlvdzwfDp37E7m0au6iLPiJ3SyuV4yFkNKITx6B3ziRchcEtq4LEC30OeBux4/wQunWvn2jau5anm22eGEXMJgPZce/hI9iaWczb/BqKtGqAXxHn60qZeKnii /npSZNXT7Q4ou824fPAD4OwzO6KwoxO6yX75WjW/2VXDJy5fxIcuWWh2OCEXN9TMNfs geDhtYt iMdm3T7n/royd4R/WDHIw7Vx/OJ0ZMzZc15cGrznfmNh6T/fpqcGmCGd0E306OsN/NsTJ9m OpevbF9hdjghFzfcwtX7P0HMSDcvlf0PfYmLzA5p3vjcygFuKBjm348m8URDhI0iLdlmDDo68yw8/SUi62vK3FixQhcWXjrVyj//6QiXlmbwo1vWY4uw7olpPcfZduAfcLj6ebnsZ3SmRmbdfDI2gR9s7KV5yMbn9yWTGNXDttwImma37DboPGvMypiYC9v 2eyIwoJO6Cb4jydP8uudZ8lOjuHaFTk8fKDR7JBCR3lYUvcQF536Ac7oNJ675Hd0Jy8zOyrTjZ9ed8ynC7q5a7CI23cm88XFDaxNHrxgm82LLDrHz7Xfhv5WeOnfIDoetnzG7IjmPZ3QQ xkUy /211LcqyDj166KDIWqfBK7qtiw8nvkNexh6bMS9m99m6GY6y/hN5cJEZ5 NrSeu46Xcj3Kgv40uIG1kyQ1C3FtxdMwUZjcelnvgp1e6H0Kij7mHmxzXO6hh5CB u6eN//7MZhF27buojEmMj4fxo/1MzmI9/gbTv jszuo xb9Q1eKrtXJ3M/JUe5 cbSevJiR/heZQHHeiOoj77NDhd9CPLWw8m/wsm/6Zr6FCIjo8wDL1W08pk/HCQrKYb3bigkLcGavTl8h dHuQbJb99BTud AFoyNrFr/fdwRqeZFV7YSo5y840l9fzr6UK U1nAZxedY3Nav9lhhYYtCi7 MByNh6oX4KEPG8vXxSSZHdm8o1voQaaU4r5Xq7jtN/spzkjgT5/aYtlkPsbmGSG/7TXWnfkJuR176UhZzeHFd1KX xadzOcg2eHmm8vqWRQ/zH9VL Cp1gh6LcUGa26GFe EU4/DL66BpiNmRzXv6BZ6ELX3O/nyw0d4/mQrN6zJ4/s3ryU 2rovuXhcZHeWs6DtVaJd/XQmLaMh yqGYiNvsFSwJEe5 frSen5yNp/f1OfQMRLFxmI3EdFJSsSYkXHj7fDIJ AXV8FlX4DLvwCOCOuvPwnrZhcTKaX4y6FG7n7iJL3DLr759pV8bGuxpec0z x6nY3H7yatr4Le CLOFN5Mf3yh2WFZUoxN8YWSRu6vz FvLRl49g7z/bJe4iPl01yyDT69B57 Crz6PTj0AFzzDVj9HrBHyoswsch 9kFQXtPJ956pYN/ZTtYVpPCH96xjWa51a32xznbWV/wXJY2PMRCbw5mC99CZvCKih Hgk3gtsIWsqJH WNDFpW96dy7pYdFSRGy7FF8Ovzd/8BFH4Bnvw6PfspYzm7LZ CiD0J0hC287SXKpDPGZWVlqry83JRjz9VEC0zUdgzwwqlWKlv7SYiJ4roVOZQVp12wOEW4O3/SU3nI6dxPQevL2NQozRlbaMy6XA/dN4EzLpd/2JfMiBu dVE/Ny8ctvb/0/HdFj0eo66 6yfQsA9iU43ujgsvNaYS8GcfYUREDiilyia6T7fQ58CjFBXNfeysaqe6bYCEmCi2r85l86IMoqOse745aaCWhU1Pk BsoTuhhNq863UXRBNdkTvCk9d28vl9yXyxPJlnGmP49vq yFn5yGaDle80fur2GqNLTz0Blc9DzkpYuBWylkfE6lc6oc/C0Iib8tpO9lR30DU4SkqcIyISedxQM6UNj5DZcwynI4XThTfTlbRcl1fmgfx4Dw9s6 b M3H84Hgi1z2bwe1LBrl96SAp0Rbrtz3Z9LtjFl8L RdB3R6o2w0txyEu3WixF262dHdHXXLxk8ej2FnVzkPlDTx1tAmXR1GcEc W0kxW5iVbeqm4KNcgy2r l5XVv8TuGeFc5laaMrfisUXeIhzz0fih/42DNv79SCJPNMSS5PDwvuJhbi0ZoiRS6uu PC5oPgq1O40ZHMUOeWvhLf9mtNzDsDEyVclFJ/QpKKU42tjDU8eaeezQORq7h0iJc7AiL5mNxWnkpVi7q1TMSBel9Q z/OzviB3toj7najqSV m 5PPMZHO5nOiO4p5T8TzTGINLCStTR7k2b4RNmSOsTXeR7LBYy306/S1GYm/YD6NDkLkMNnwEVt4IKQVmR c3ndBnYKyc8kpFG08da6axewi7TbhscSY3lxVw7YocHjlo3cm07O5h8tp3UtT0LIUtz59vkR9d/Pd0pK2z9ELN4Wq6ybmePt3Dax0plHcncnogDoXRKk2JcpEdM0p2zAjZ0aOkOlykOdzeSxepDhfRNmW9yb/cIxCdCOW/gsYDxm0FG41BS8tvgPSSed1yn/NJURG5HvgxYAd qZT6zrj7xXv/24BB4KNKqYNzijoEPB5FfdcgJ5v6OH6uhz3VHRyq72bUrXDYhcuXZPH/rl3CdStzSI23SO8NpYhyDRAz2kP0aC/Rrl4SBs R0l9JRs9RMrqPYVejOB0pVBXcxJmiW hJWmx21NocpDncvDO3k3fmdjLotnFmIJbqgVhaR6JpdTo43R/H7pFkPFyYxOLtbvJOK7JjPWTHesiPd1OQ4KYw3kNBgpv8eDex4Ta/nD3a6O540Qeg/Qyc CucfAye 4bxk5ANhZug6BLIv9hYCi8ha14n THTttBFxA6cBq4DGoD9wPuVUid8tnkb8FmMhL4Z LFSavNU w1UC93jUbiVwu1ReLyXTpeHAaeLvmEX/U4XA07jsrXXybmeIZp7hmnsHqKytZ/BEaOuaBNYsyCFS0ozcI56WJgRT0yUSX pSiF4EOVBlOv8pc3jRvBg84zicA0Q5RrA4R4gyjXkvRwgyjVItKv/fLKOHn3jJ9bZRpR7GOHC99wjdgZjc6nLvY7mzC20pG9ETVAj1y10a/Io6HXZ6R6Nons0ii6fS1t0HK3DNlqG7DQP2XCpNye2nFgjyRfEeyj0Jvm0aEVKtIdkhyLZ4SHaDtE2hcNmXEbb5mF HGiH9gpjHvbBduiqeeO mGTIKIXUhZCYA0k5xmVcmtHnPTrRe n93R5tTCwmdqN3jc0esCc81xb6JqBSKVXt3dmDwI3ACZ9tbgR p4z/DntEJFVE8pRSTXOM/QJPHW3icw8eOp/EZyo 2k5eSiz5qXG8t6yQFXlJLMtNZmlO4vlh RP1Mw 24sbH2XzsXxDlwabmtuyWR yMRCUz4jB nI4U uILiRtuw2WPxWWPxW2P817G4oxKNuriYqOq6OYAPSMtnNgEUh1uUh1uwPmm 3xLLm4FLUM2Ggbs1A/aaRiwUT9gp2HQzoEOB483xOBW/iUuuyhswLuLh/nOhnmwfmhCpvGzcKvRT72vGZqPGSdTOyqh4wy0HIOqF8HZO4sDyBtJ/tLPGqNbA8yfhL4AqPe53oDRCp9umwXAmxK6iHwS KT3ar IVMwo2jdkAu2zfCwnZ/tA88zi XbN8lD/NMvHBdyc3uMwFGnPF7zP bvAd82O5AK3BWOnPu/xN70/szLp4sP JPSJ/t2Obxr7sw1KqfuA /w45tQBiZRP9pXDiiLt ULkPedIe74Qec85FM/Xn1EwDYDvLEsFwLlZbKNpmqYFkT8JfT wREQWiUg0cAvw2LhtHgM LIZLgJ5g1M81TdO0yU1bclFKuUTkTuAZjG6Lv1ZKHReRO7z33ws8idHDpRKj22KwZ76Zc9kmzETa84XIe86R9nwh8p5z0J vaQOLNE3TtMCy7kxSmqZpEUYndE3TNIsI24QuIt8SkUYROeT9eZvZMYWCiPyTiCgRsfQE5CJyl4gc8b63z4pIvtkxBZuIfF9ETnmf96Mikmp2TMEkIjeLyHER8YiIpbsvisj1IlIhIpUi8uVgHSdsE7rXfyml1nt/njQ7mGATkUKMKRhCP5Q19L6vlFqrlFoPPM4cRmGEkeeA1UqptRjTbXzF5HiC7Rjwd8CrZgcSTN7pU 4BtgMrgfeLyMpgHCvcE3qk S/gi0wwaMtqlFK Y6sTiIzn/KxS5 d92IMxnsOylFInlVKzHS0eTs5Pn6KUGgHGpk8JuHBP6Hd6v57 WkQsPUm3iLwTaFRKHTY7llARkbtFpB74AJHRQvd1G/CU2UFoATHZ1CgBN6 XoBOR54HcCe76GvBz4C6MlttdwA8I0gQMoTLN8/0q8JbQRhRcUz1fpdRflVJfA74mIl8B7gT JaQBBsF0z9m7zdcAF/CHUMYWDP483wjg19QogTCvE7pS6lp/thORX2DUWcPaZM9XRNYAi4DDxtTzFAAHRWSTUqo5hCEGlL/vL/AA8AQWSOjTPWcR QjwduAaZYFBIjN4j60sZFOjhG3JRUTyfK7ehHGCxZKUUkeVUtlKqWKlVDHGH8jF4ZzMpyMiS3yuvhM4ZVYsoeJdSOZLwDuVUoNmx6MFjD/TpwTEvG6hT N7IrIe46tLDfApc8PRAuw7IrIM8AC1wB0mxxMKPwVigOe838T2KKUs 7xF5CbgJ0AW8ISIHFJKvdXksAJusulTgnEsPfRf0zTNIsK25KJpmqa9mU7omqZpFqETuqZpmkXohK5pmmYROqFrmqZZhE7omqZpFqETuqZpmkX8fxwv9HcxWQAAAAJJREFU 60j1FqZAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1 /AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy WH4yJAAAgAElEQVR4nOzdd3gU1frA8e9JIaGGkFBCCaGXJNTQFBEEpIlIUVDxguWiP/XalSZdmmJXrnIVULGAVGnSi3QBkYSETgKhJQQSQnqy5/fHDJKEJATIZlLez/PwkJ05O ed3Zl3Z8 cPUdprRFCCFF8OFgdgBBCiPwliV8IIYoZSfxCCFHMSOIXQohiRhK/EEIUM5L4hRCimJHEnwtKKR llFZKOVkdy3VKqfFKqXm3UV4rperaMyarKKW UkqNyWH9bb1WBVXm41AptVkp9ZwdtrtaKTXkbrdrbus pdSRdI9DlVJd8mLbdxBLR6VUuBV1FzTFJvGbB1yCUuqaUuqKUmqlUqqG1XEVNPn1IZeX9WitX9BaTzK3Kyf3XdJa99Baf3ercrm5mNBa/6G1bpAXcSml5iql3suLbRV3xSbxm3prrcsAXsBF4HOL4xFFWEH6hmiF4r7/6RW016K4JX4AtNaJwEKg8fVlSqleSqm/lFJXlVJnlFLjs3u UupppVSIUipWKXVSKfV8unUdlVLhSqk3lVIRSqnzSqmn060vqZT6UCkVppSKUUptU0qVNNe1VUrtUEpFK6X Vkp1TPe8WkqpLWad6wDPnPZRKfW2Wfc5pdQzmdbltK9bzf jzW9H7ZRSdZRSG5VSUUqpS0qpH5VS5dNtb7hS6qwZ2xGlVGdzuYNSaoRS6oT53AVKqQrZ1ZMpRlfzG5qn fhdpVSqUqqc fg9pdQn5t9zzcelgdVAVXOb15RSVc1NllBKfW/GeEgpFZDDa6eVUi8opY6Z3w6/VEqpdPv0rvn RZjbdDPXXf8W86xS6jSwUSk1VCm1XSn1sfm nlRK3WMuP2NuY0i6unN9HKZ7jotS6rJSyj/dskrm61cxi/KOSqkZ5nt5EuiVaf0/TUhKqbrmcRdjlp9vLr/ /v1tvs4D0x37w5VSF4A5KutvYK2UUsHmaztHKeVqbnOoUmpbFu9FXaXUMOBJ4B2zvuXm qpKqUVKqUil1Cml1CvpnlvSPDauKKWCgVY5vIbKfI8izH09qJTyS7ed7M7Zh83jKdp83Rql22ao VocBOKUUk4q53N8qHl8xJr78mR28d41rXWx AeEAl3Mv0sB3wHfp1vfEfDH DBsgvGN4BFznQ gASfzcS gDqCA 4F4oEW67aQCEwFnoKe53t1c/yWwGagGOAL3AC7m4yizvAPQ1Xxc0XzeTuAjs2wHIBaYl82 djfj9wNKAz Z8de93X01l9U143EBKmIk7U/MdQ2AM0DVdM vY/79GrALqG4 92vg5 zqyWI/tgL9zb/XAieAHunW9TX/ngu8l27fwjNtZzyQaL62jsBUYFcO9WpgBVAe8AYige7mumeA40BtoAywGPgh0z59b77uJYGh5vHwtFn3e8Bp8zhwAR4038syd3AcbgaeM/ eCUxPtw vAsuz2b8XgMNADaACsCmH7f4MjDbjcQXaZ3qd6mY6h1KB6ea lcz8fmCch0Hp6t6e7r0bCmzL4r24ftz 8z6bjx2AfcBYoIT5npwEupnrpwF/mPXUMOsNz Y16WZuqzzGed0I8LrFOVsfiMM4N5yBdzCOjRLp9vWAWXdJcjjHMY6Xq0AD87legK/d8qEVSdiKf abcA2INg/Oc4B/DuU/AT7O6oTLouxS4NV0B38CGRNnBNDWfLMTgKZZbGM4ZgJJt2wNMAQj aQCpdOt 4nsE/9sYFq6x/XJdJLe6b6aZR4B/jL/rmvuXxfAOVO5EKBzusdeQArglMt6JgGfmeUvYCSzaRgJKAHwNMvN5daJf326x42BhBzq1WRMcAuAEebfG4AX061rkMU 1U63fihwLN1jf7NM5XTLooBmt/vekDFBt8H4AHYwH 8FHstmmxuBF9I9fjCH7X4PzAKqZ/M6ZU78yYBrpmWZE3/6unsCJ9K9VreT NsApzOVHwnMMf8 ifmBbT4elvnYSLfuAeAo5nmabnlO5 wYYEGmsmeBjun29ZlcnuOlMXJTf6BkdsdmXv0rbk09j2ity2N8Wr8MbFFKVQFQSrVRSm0yvzLGYFwVZdmcopTqoZTaZX69jsY4eNOXjdJap6Z7HI9xdeiJkbROZLHZmsCj5lfAaHO77TGSZVXgitY6Ll35sBz2sypGEsiy7O3sq1m klLqF2U051wF5l0vr7U jnFlPx6IMMtdb16pCSxJtz8hQBpQOYfY09uCkThaAIHAOoxvWG2B41rrS7ncDhgfHNfFA64q53bXzOXLmH9XJePrGYaR9NPvU/rXHoyr9usSALTWmZeVgdt/b67TWu/GuPq8XynVEOMD bdsiud4fGTyDsYV8B6zSeOZHMoCRGqjKTUnmeuuml3BW6iJ0ayX/pwZxY33Itf7qbXeCHyBcXV/USk1SxnNijmdsxmOBa21zayvWroy6evP9hw3z 2BGO/3eWV0Pml465fgzhS3xA A1jpNa70YIwm1Nxf/hHGi1NBauwFfYRzwGSilXIBFwAyMq7bywKqsymbhEkaTQ50s1p3BuBoon 5faa31NOA84K6MNuzrvHOo5zzG18vsyua0rzqL7U01lzfRWpcDBqcrj9b6J611e4wDW2N81b Tz0y7ZOr1vpsNvVktgPjirovsEVrHWzuSy MD4Ws5Ga7d Mcxn5ed/3bWPpEfjcx5Oo4zMZ3GO/NU8DCHBLwrY6Pf2itL2it/621rgo8D8xUOffkyc2 Z677nPl3HEYzLADXL8py2PYZ4FSm46us1rqnuT7X wmgtf5Ma90S8MX4lvw2OZ zGY4FpZQy6zubTcw5neNorddorbtiXOwdBv6XU7x3o1gmfvNGTh/AHeMqFKAscFlrnaiUag08kc3TS2B8Y4gEUpVSPTC Kt SeUUwG/jIvCnlqIybpy4YV9G9lVLdzOWu5o2x6lrrMIyv7hOUUiWUUu2B3jlUtQAYqpRqrJQqBYzLtD6nfY0EbBjtpenLX8O4EVsN44QAQCnVQCn1gLkPiRhXr2nm6q AyUqpmmbZiubrnl09mV veIx215e4keh3YCSg7BL/RcBDmTdc7eBn4HVl3GwvA0wB5mf6hnc3cnscZuUHjA/JwRhNNNlZALyilKqulHIHRmRXUCn1qFKquvnwCkYiu/7 XiSH9y8HL5l1V8C4Qp9vLv8b8FVKNVPGDd/xmZ6Xub49wFXzBmpJ87zxU0pdv4m7ABiplHI39 E/OexnK/PbljPGB1AikHaLc3YB0Esp1dl83ptAEsYxmpVsz3GlVGVl3CgubW7jGjde5zxX3BL/cqXUNYybKJOBIVrrQ a6F4GJSqlYjJtFC7LagNY6FnjFXH8F48TM7it1Vt7CaLb4E7iMcXXsoLU A/TBOBEiMa4O3ubGe/QERpvmZYxEnu2JrbVejdE2vBHjZtPGTEWy3Vcz2U4GtptfR9sCEzCaW2KAlRg3NK9zwWh3v4TRPFLJ3AeATzFem7VmXbvMfciunqxswbhxtifd47Lc6BWUed8PYyTnk Z277QZITuzMRLsVuAURoLINqHcgVwdh1nRWocD zGS8x85FP0fRtvy32b5xTmUbQXsNs b3zDuZZ0y140HvjNf58dyGyfGt5q1GG3wJzFueKO1PorRKWI9cAzYlul53wKNzfqWaq3TMC6AmmG8F5eAb4DrH/oTMJpiTpn1/ZBDTOUwXpcr5nOiML7VQ/bn7BGMD9nPzbp7Y3QZT86qgluc4w4YHxznzDruxzgW7EKZNxiEEEWAUmo2cE5r/a7VsYiCq0D9qEAIceeUUj5AP6C5tZGIgq64NfUIUSQppSZh9FP/IF1TjBBZkqYeIYQoZuSKXwghiplC0cbv6empfXx8rA5DCCEKlX379l3SWt80XlOhSPw Pj7s3bvX6jCEEKJQUUpl WtlaeoRQohiRhK/EEIUM5L4hRCimCkUbfxZSUlJITw8nMTEWw0EKNJzdXWlevXqODs7Wx2KEMIihTbxh4eHU7ZsWXx8fDAGxRO3orUmKiqK8PBwatWqZXU4QgiL2K2pRyk1WxnTmAVlse4tZUypdstxxrOTmJiIh4eHJP3boJTCw8NDviUJUczZs41/LsYUgBkopWpgTDl2 m4rkKR/ Q1E0LYLfFrrbdiDC a2ccYs/rIWBFCCJGNK3HJjP/tEFcTU/J82/naq0cp9TBwVmv9dy7KDlNK7VVK7Y2MjMyH6PJXz549iY6OzrFMmTJlslw dOhQFi5caI whBAW01qz7MBZOn 0hXm7wthzMqvr57uTbzd3zZmgRpP72apmYUzyTEBAQJH5dnB9suNVq1ZZHYoQooAJvxLP6CVBbDkaSbMa5ZnW35 GVcrleT35ecVfB6gF/K2UCgWqA/uzmFezUBg fDgzZ8785/H48eOZMGECnTt3pkWLFvj7 7Ns2TIAQkNDadSoES CItWrTgzJkz Pj4cOmSMVf4I488QsuWLfH19WXWrFkZ6nnzzTdp0aIFnTt3JqtvPvv27eP nZcuWdOvWjfPnz9txr4UQ9pBm03y77RQPfryVP0MvM653Yxb93z12SfrAjStQe/wDfICgbNaFAp652U7Lli11ZsHBwTcty0/79 /XHTp0 Odxo0aNdFhYmI6JidFaax0ZGanr1KmjbTabPnXqlFZK6Z07d/5TvmbNmjoyMlJrrXVUVJTWWuv4 Hjt6 urL126pLXWGtDz5s3TWms9YcIE/dJLL2mttR4yZIj 9ddfdXJysm7Xrp2OiIjQWmv9yy /6KeffvqWsVv92gkhbgg F6Mf/vwPXXP4Cj109m595nJcnm0b2KuzyKl2a pRSv0MdAQ8lVLhwDit9bf2qi /NW/enIiICM6dO0dkZCTu7u54eXnx uuvs3XrVhwcHDh79iwXL14EoGbNmrRtm/W0sp999hlLliwB4MyZMxw7dgwPDw8cHBwYOHAgAIMHD6Zfv34ZnnfkyBGCgoLo2rUrAGlpaXh5edlrl4UQeSgxJY3PNx7j6y0ncSvpzKeDmvFw06r50vPObolfa/34Ldb72Kvu/DJgwAAWLlzIhQsXGDRoED/ CORkZHs27cPZ2dnfHx8/ukzX7p06Sy3sXnzZtavX8/OnTspVaoUHTt2zLaffeYDQmuNr68vO3fuzNsdE0LY1a6TUYxcHMipS3EMaFmd0T0b4V66RMZCqcmwby60HAJOLnlav4zVcxcGDRrEL7/8wsKFCxkwYAAxMTFUqlQJZ2dnNm3aRFhYliOiZhATE4O7uzulSpXi8OHD7Nq16591Npvtn947P/30E 3bt8/w3AYNGhAZGflP4k9JSeHQoUN5uIdCiLwUE5/CiEUHGTRrF2k2zbxn2zDj0aY3J/3Tu Dr 2D123Ak7zuCFNohGwoCX19fYmNjqVatGl5eXjz55JP07t2bgIAAmjVrRsOGDW 5je7du/PVV1/RpEkTGjRokKE5qHTp0hw6dIiWLVvi5ubG/PnzMzy3RIkSLFy4kFdeeYWYmBhSU1N57bXX8PX1zfN9FULcOa01vwddYOxvh4i6lsTzHWrzWpf6lCzhmLFgQjSsHw/75oBbDXh8PjS46Xewd61QzLkbEBCgM0/EEhISQqNGjSyKqHCT106I/HMhJpExy4JYF3wR36rlmN6/CX7V3DIW0hoOLYHfR0BcJLT5P g0Clyy/i1Pbiml9mmtAzIvlyt IYSwA5tN8 Oe07y/ jApNhsjezTk2fa1cHLM1MIefRpWvgnH1oJXU3hiPlRtbtfYJPELIUQeOx4Ry4hFgewNu0L7up5M7utHTY9MHTzSUmH3f2HTFEBBtynQ nlwtH9alsQvhBB5JDnVxn83n DLTccp5eLIjEeb0r9FtZu7aJ7dD8tfhQsHoX536DkDytfItzgl8QshRB7YF3aFkYsPcvTiNR5uWpWxvRvjWSZTN8ykWNg4GfZ8DaUrwaPfQeM kM j5kriF0KIu3AtKZUPfj/M97vC8CrnypyhrejUsNLNBQ vglVvw9WzEPAMdBkHrm43l8sHkviFEOIOrQ yJhlQVy4msiQdj681a0BZVwypdWr52D1OxCyHCo1hkfnQI3W1gRsksQvhBC3KSI2kQnLg1l58DwNKpdl5pMtaO7tnrGQzQZ7v4X1E8CWAp3HQrv/gFOJrDeaj SXu3fh nj5oaGh Pn55fp5oaGh/PTTT/YKSwhhJ1prFvx5hi4fbmFd8EXeerA y//T/uakf/EQzH4QVr0F1VvC/ 2A 94sEEkf5IrfrlJTU3Fyuvklvp74n3jiiVw/RwhhrdBLcYxaEsiOE1G0rlWBqf38qVMx0w sUhJgy3TY8bnRft93FjR5LN9v3t5KkcgwE5YfIvjc1TzdZuOq5RjX /aHPpg7dy4rV64kMTGRuLg4Nm7ceFOZESNGEBISQrNmzRgyZAju7u4ZnjN27FhmzJjBihUrAHj55ZcJCAhg6NCh7Nu3jzfeeINr167h6enJ3LlzZUROIewoJc3G//44yafrj1HCyYEpff0Z1KoGDg6ZkvmJjbDidbgSCs0Gw4OToFQFS2K lSKR AuanTt3cvDgQSpUyPpNnzZtWobEPnfu3AzP2bx5c5bPS0lJ4T// Q/Lli2jYsWKzJ8/n9GjRzN79mx77YoQxdrB8GiGLwok5PxVuvtWYUIfXyqXc81Y6FokrBkFgQugQh0YshxqdbAm4FwqEon/Tq7M7alr167ZJv27eY6Mvy9E/ohPTuWjtUeZvf0UnmVc GpwS7r7ZZosUGv4ax6sGwNJ16DDO0Y7vrNr1hstQOw5Ects4CEgQmvtZy6bBPQBbEAEMFRrfc5eMVglu7H3c/scJycnbDbbP4 vj88v4 8LYX9bjkYyekkg4VcSeLKNN8N7NKScq3PGQpeOwfLXIGwbeLeDhz6BSrcejbegsGevnrlA5vFEP9BaN9FaNwNWAGPtWH BVbZsWWJjY7NdX7NmTYKDg0lKSiImJoYNGzYAMv6 EPZ0OS6Z1 cfYMjsPbg4ObDg XZM7uufMemnJsHm6fDfe BiIPT FIauKlRJH w7A9dWpZRPpmXp78CWBgr mNB20KRJE5ycnGjatClDhw7F3T1jV7AaNWrw2GOP0aRJE rVq0fz5sZIfTL vhB5T2vNsgPnmLgimNjEFF55oC4vdqqLq3OmsfLDdhjj61w6Cn79odtUKFvZmqDvkl3H4zcT/4rrTT3mssnAv4AYoJPWOvJW25Hx POWvHZCGM5cjmf00iC2Ho2kuXd5pvVrQoMqZTMWSrgC68bC/u hvDf0 gjqdbUm4NtUYMbj11qPBkYrpUYCLwPjsiqnlBoGDAPw9vbOvwCFEEVemk0zZ/spPlx7FAcFEx72ZXDbmjim76KpNQQtMiZHib8M97wCHUdAidu/h1fQWNmr5ydgJdkkfq31LGAWGFf8 RhXngkMDOSpp57KsMzFxYXdu3dbFJEQIvjcVUYsPsjB8Bg6N6zEpEf8qFq ZMZCV0JhxRtwYgNUbQGDF4NXE0vitYd8TfxKqXpa62Pmw4eBw/lZf37z9/fnwIEDVochhAASU9L4dMMxZm09iXspZz5/vDkPNfHKOFZ WgrsmgmbpoKDI3SfDq3/bfxdhNizO fPQEfAUykVjnFl31Mp1QCjO2cY8IK96hdCiOt2nLjEqMWBhEbFM6Bldd7t1YjypTKNmxO z7h5ezEQGvSCnu DW3VrArYze/bqeTyLxd/aqz4hhMgsJj6FyauCWbA3nJoepfjxuTbcW9czY6HEq7DxPdgzC8pWgYHzoFFvawLOJ0Xil7tCCJGe1ppVgRcY99shrsQn88L9dXi1cz1KlsjUZBOywpgcJfa80aTzwBhwLWdN0PlIEr8Qokg5H5PAmKVBrA JwL aG3OfboVftUwzXcWcNSZHObwCKvvBwB g k29HossGY//LtzpePx5be7cubz88suW1S9EQWCzab7fGUrXj7ay7fglRvdsxJIX78mY9G1psPtr LINHN8AXSbAsM3FKumDXPHb1d2OrZ WloajY9HqTSCEPRy7GMuIxYHsC7vCffU8mfyIP94epTIWuhBo3Lw9uw/qdIZeH0KFWtYEbLGikfhXjzDe1LxUxR96TLvtp VmPP7NmzczduxYPDw8OHLkCB06dGDmzJk4ODhQpkwZ3njjDdasWcOHH35IaGgon332GcnJybRp04aZM2fi6OjInDlzmDp1Kl5eXtSvXx8XFxcAfv31VyZMmICjoyNubm5s3br1rl8KIQqqpNQ0Zm46wczNxynt4sSHjzalX4tqGbtoJsfDlmmw4wtjfPx 34D/gAI3OUp KhqJv4C51Xj8AHv27CE4OJiaNWvSvXt3Fi9ezIABA4iLi8PPz4 JEycSEhLC9OnT2b59O87Ozrz44ov8 OOPdO3alXHjxrFv3z7c3Nzo1KnTP P5TJw4kTVr1lCtWjWio6Pza5eFyHd7Qy8zYnEgxyOu8Uizqox5qDEeZVwyFjq 3vghVnQYNH8Kuk4ssJOj5Keikfjv4MrcnnIztn7r1q2pXbs2AI8//jjbtm1jwIABODo60r9/fwA2bNjAvn37aNWqFQAJCQlUqlSJ3bt307FjRypWrAjAwIEDOXr0KAD33nsvQ4cO5bHHHqNfv3722kUhLBObmML03w8zb9dpqpUvyZynW9GpQaWMha5FwO8jIWgheNQzRtD0udeagAugopH4C5jcjMevMn3NvP7Y1dX1n3Z9rTVDhgxh6tSpGcouXbr0pudf99VXX7F7925WrlxJs2bNOHDgAB4eHneyG0IUOGsPXWDsskNcjE3kmXtr8eaD9Sntki6N2Wzw1w/G5CgpCdBxJLR/HZxcst9oMSS9eiyyZ88eTp06hc1mY/78 bRv3/6mMp07d2bhwoVEREQAcPnyZcLCwmjTpg2bN28mKiqKlJQUfv3113 ec LECdq0acPEiRPx9PTkzJkz bZPQthLxNVEXvxxH8N 2Ef5Us4sefFexvZunDHpRx6Bub1g StGF80XthuDqknSv4lc8VukXbt2jBgxgsDAQDp06EDfvn1vKtO4cWPee 89HnzwQWw2G87Oznz55Ze0bduW8ePH065dO7y8vGjRogVpaWkAvP322xw7dgytNZ07d6Zp06b5vWtC5BmtNfP/PMPkVSEkpdp4u1sDhnWojbNjumvWlETY9hH88ZExcubDnxuTnTvIdW127Doef14pauPxb968OcNk6/mtML92ovg4GXmNkYsD2X3qMm1qVWBqP39qVyyTsdCpP2DFaxB1HPwfNSZHKVPRmoALoAIzHr8QQuQkJc3GrK0n XTDMVycHJjaz5 BATVwSD9WfvxlWDsGDsyD8jVh8CKo28W6oAsZSfx2lNN4/B07drQmKCEKsANnohmx6CCHL8TSw68KEx72pVI51xsFtIaDC2DNKGNmrHtfg/uHQ4lS2W9U3KRQJ36tdba9WwqCgjgef2Fo2hPFT1xSKh uPcrcHaeoWNaFWU 15EHfKhkLXT5p9Mk/uQmqtYR/LTV aCluW6FN/K6urkRFReHh4VGgk39BorUmKioKV1fXWxcWIp9sPhLB6CVBnI1OYHBbb97p3pByrs43CqSlwI7PYct0cHCGHh9Aq2eL3OQo anQJv7q1asTHh5OZOQt52oX6bi6ulK9etGcXEIULlHXkpi0IpilB85Rp2Jpfn2hHa18Mv3w8cyfxvg6EYeg4UPQ8wMoV9WagIsQe87ANRt4CIjQWvuZyz4AegPJwAngaa31HY0r4OzsTK1axXOAJSEKM601S/46y6QVwVxLSuWVzvV4qVMdXJzSXcEnxsCGifDnt1DWCwb9BA17WRd0EWPPK/65wBfA9 mWrQNGaq1TlVLTgZHAcDvGIIQoQM5cjmfUkkD OHaJFt7lmda/CfUrl71RQGsI Q1WD4fYC9DmeXjgXXApm/1GxW2z59SLW5VSPpmWrU33cBcwwF71CyEKjtQ0G3N3hPLh2qM4KJjYx5fBbWpm7KIZE27MhnVkFVT2h0E/GjdxRZ6zso3/GWB diuVUsOAYQDe3t75FZMQIo8dOhfDiEWBBJ6NoUujSkzs40fV8iVvFLClGfPdbnwPtA26ToK2L4Jjob0FWeBZ8soqpUYDqcCP2ZXRWs8CZoHxy918Ck0IkUcSU9L4ZP0x/vfHSdxLOfPlEy3o6V8lYy 8838bN2/P/WX8AKvXh DuY1nMxUW J36l1BCMm76dtXQqF6JI2nH8EiOXBBIWFc9jAdUZ1bMR5UuVuFEgOQ42TYFd/zXGx //Lfj1L9aTo SnfE38SqnuGDdz79dax dn3UII 4uOT2bKqhAW7A2npkcpfnquDffU9cxY6OhaWPkmxJyGFkOg6wQo6W5NwMWUPbtz/gx0BDyVUuHAOIxePC7AOvPr3i6t9Qv2ikEIkT 01qwMPM/43w5xJT6F/ tYh1c718PVOV0XzdiL8PsIOLQYPBvA06uh5j3WBV2M2bNXz NZLP7WXvUJIaxxLjqBMUuD2HA4gibV3fjumdb4VnW7UcBmg/3fwfpxxuQonUbDva/KOPkWktvmQog7kmbTzNsVxvu/H8am4d1ejRh6jw9O6cfKjzhs3Lw9swt87oOHPgHPutYFLQBJ/EKIO3D0YizDFx3kr9PR3FfPkyl9/alRId0ImSmJ8McM2PYJuJSBPjOh2RNy87aAkMQvhMi1pNQ0vtx0gv9uPk4ZFyc HtiUR5pVy9hF89RWWPG6MTlKk0HQbTKU9sx oyLfSeIXQuTKn6GXGbHoICci4 jbvBrv9mqER5l07fTxl2Htu3DgR3CvBU8thTqdrAtYZEsSvxAiR1cTU5i jA/7j5NtfIl e6Z1txfP930hlrDwfnG5CiJMXDfm9DhbXAumf1GhaUk8QshsrXm0AXGLgsiMjaJZ9vX4o2u9Sntki5tROZo6soAACAASURBVJ0wmnVObYHqraH3J1DZ17qARa5I4hdC3OTi1UTGLTvE74cu0LBKWWY9FUDTGuVvFEhNhh2fwdYPwLGEMdRCy2fAwSH7jYoCQxK/EOIfNptm/t4zTFkVQlKqjXe6N Df99XGOX0XzdO7YcVrEBEMjftA9 lQzsu6oMVtk8QvhADgROQ1Ri4OZM py7StXYGp/ZpQy7P0jQIJ0bBhAuydA WqwePzoUF36wIWd0wSvxDFXHKqjVlbT/DZxuO4Ojkwvb8/jwXUuNFFU2sIXmpMjhIXaQyZ3GmU0T9fFEqS IUoxv46fYWRiwM5fCGWXv5ejHu4MZXKut4oEH0aVr4Fx9ZAlSbwxHyo2ty6gEWekMQvRDEUl5TKjLVHmLsjlMplXfnfvwLo2rjyjQJpqbD7K2PoZDQ8OBnavCCToxQR8i4KUcxsOhLBu0uCOBudwFNta/JO9waUdXW UeDcX8b4Ouf/hnrdoNcMKC z4BUlkviFKCYuXUti0opglh04R91KZVj4QjsCfCrcKJB0DTZNNq70S1eER dC40dkfJ0iSBK/EEWc1ppF 8/y3spg4pJSea1LPf6vYx1cnNKNlX/kd1j1FsScgYBnoPM4KFk 42KQs2eE7HMxphiMUJr7WcuexQYDzQCWmut99qrfiEEnI6KZ9SSQLYdv0TLmu5M6 dPvcplbxSIvQCr34HgZVCxETyzFrzbWBewyBf2vOKfC3wBfJ9uWRDQD/jajvUKUeylptmYvf0UH607ipODA5P6 PJkm5o4OJjNNjYb7JsN6ydAahI88C7c8yo4lch5w6JIsOcMXFuVUj6ZloUAGYdwFULkqaCzMYxYfJCgs1fp0qgSkx7xw8st3YBpF4ONm7fhe6BWB2NyFI861gUs8l2BbeNXSg0DhgF4e0uPAiFuJSE5jU82HOWbP07hXqoEXz7Rgp7 VW5caKUkwJb3jTF2XMrBI19B00Fy87YYKrCJX2s9C5gFEBAQoC0OR4gCbfvxS4xcHMjpy/EMDKjBqJ6NcCuVrovmiU3GKJpXTkHTJ DB96C0h3UBC0sV2MQvhLi16Phk3lsZwsJ94dTyLM3P/25LuzrpEnrcJWOc/IPzoUJt NcyqN3RqnBFASGJX4hCSGvN8oPnmbj8ENHxKbzYsQ6vdK6Hq7Pj9QJw4CdYO9ron9/hbbjvLXB2zXnDoliwZ3fOn4GOgKdSKhwYB1wGPgcqAiuVUge01t3sFYMQRdHZ6ATGLA1i4 EImlR34/tn2tC4arkbBS4dN4ZNDv0DarQ1Jkep1Mi6gEWBY89ePY9ns2qJveoUoihLs2l 2BnKB2uOYNPwbq9GPH1vLRyvd9FMTYbtn8DWGeDkCg99DC2GyuQo4ibS1CNEIXDkQizDFx3kwJloOtSvyORH/KhRodSNAmE7jS6al46Ab1/oPg3KVrEuYFGgSeIXogBLTElj5qbj/HfLCcq6OvPJwGb0aVb1RhfNhCuwbhzs/w7cvOGJX6H g9YGLQo8SfxCFFB7Tl1mxOKDnIyMo1/zarz7UGMqlDZ/Was1HFoMq0dA/CVo97IxOUqJ0jlvVAgk8QtR4FxNTGHa6sP8tPs01d1L8v0zrelQv KNAlfCYOWbcHwdeDWDwQvBq6l1AYtCRxK/EAXI70EXGLssiEvXkniufS3eeLA pUqYp2laKuyaCZunAspox289DBwcc9ymEJlJ4heiALh4NZFxyw7x 6ELNPIqxzdDAmhSPd2wyGf3GTdvLwRCg57Q8wNwq25dwKJQk8QvhIVsNs0vf55h6uoQklNtDO/ekOfuq4Wzo9kFMykWNr4He2ZBmcrw2A/QqLeMryPuiiR ISxyIvIaIxcFsif0Mu1qezC1nz8 nuluzh5eZUyOcvUctHoOOo8BVzfrAhZFhiR IfJZcqqNr7ec4PONx3F1duD9/k14NKD6jS6aV88Zk6OELIdKvvDod1CjlbVBiyJFEr8Q Wj/6SuMXBTIkYux9GrixbjejalU1hw/x5YGe83JUWwp0GW80U3T0TmnTQpx226Z JVSlYEpQFWtdQ lVGOgndb6W7tHJ0QRcS0plRlrjvDdzlCqlHPlm38F0KVx5RsFLgQZN2/P7oXaneChj4zRNIWwg9xc8c8F5gCjzcdHgfmAJH4hcmHj4Yu8uySI81cT VfbmrzVrQFlXc2r OR42DIddn4BruWh3//A/1G5eSvsKjeJ31NrvUApNRJAa52qlEqzc1xCFHqXriUxYXkwy/8 R71KZVj4Qjta1qxwo8DxDcbkKNFh0HwwdJ0EpSpkv0Eh8khuEn cUsoD0ABKqbZAjF2jEqIQ01qzcF84k1eFEJ Uxutd6vNCx9q4OJk/tLoWCWtGQuCv4FEXhqyAWvdZG7QoVnKT N8AfgPqKKW2Y4ylP8CuUQlRSIVFxTFqSSDbj0cRUNOdaf39qVuprLFSa/hrHqx9F5Lj4P7h0P4NmRxF5LtbJn6t9X6l1P1AA0ABR7TWKbd6nlJqNvAQEKG19jOXVcC4P ADhAKPaa2v3HH0QhQQqWk2vt12io/XH8XJwYFJj/jxZGtvHK6PlX/pGCx/DcK2gfc9xuQoFRtYG7QotnLTq dfmRa1UEqhtf7 Fk dC3wBpC83AtigtZ6mlBphPh5 G/EKUeAEnY1h KKDHDp3la6NKzOxjy9ebiWNlalJsO1j ONDcC4JvT D5k/J5CjCUrlp6kn/yxFXoDOwn4wJ/SZa661KKZ9Mi/tgTMcI8B2wGUn8opBKSE7jk/VH WbbKSqULsF/n2xBd78qN36IFbrdmALx0lHw6w/dpkLZyjlvVIh8kJumnv kf6yUcgN uMP6Kmutz5vbPa UqpRdQaXUMGAYgLe39x1WJ4R9bDt2iVFLAjl9OZ7HW9dgRPdGuJUyu2jGX4Z1Y GvH6C8Nzy5COp1sTZgIdK5k1/uxgP18jqQzLTWs4BZAAEBAdre9QmRG1fiknlvZQiL9odTy7M0P/ 7Le3qeBgrtYbAhUaPnfjLcM8r0HGETI4iCpzctPEvx zKCTgAjYEFd1jfRaWUl3m17wVE3OF2hMhXWmt /scE5cHE5OQwkud6vCfB rh6mx20bwSCivegBMboGoLGLwYvJpYGrMQ2cnNFf MdH nAmFa6/A7rO83YAgwzfx/2R1uR4h8czY6gXeXBLLpSCRNq7sx77k2NPIqZ6xMS4GdX8LmacaEKD3eN0bSlMlRRAGWmzb LXeyYaXUzxg3cj2VUuHAOIyEv0Ap9SxwGnj0TrYtRH5Is2m 2xHKjLVHABjzUGOG3uOD4/UumuH7YPkrcDEIGj5kJH23ahZGLETuZJv4lVKx3GjiybAK0FrrcjltWGv9eDarOuc PCGscfjCVYYvCuTvM9F0bFCR9x7xo7p7KWNl4lXYOAn2/A/KVoGB84zJUYQoJLJN/FrrsvkZiBAFQWJKGl9sPM5XW05QrqQznw5qxsNNq97oohmyHFa9A7HnofW/4YEx4JrjNZAQBU6ue/WYXS// W251vq0XSISwiK7T0YxcnEgJy/F0a9FNd7t1ZgKpUsYK2POGpOjHF4Blf1g4A9QPcDagIW4Q7np1fMw8CFQFaMXTk0gBPC1b2hC5I YhBSmrT7Mz3tOU6NCSb5/pjUd6lc0VtrS4M9vYMMksKVClwnQ7iWZHEUUarm54p8EtAXWa62bK6U6Adm13wtRqPwedJ6xyw5x6VoS/76vFq93rU pEuZpcSHQnBxlH9TpDL0 hAq1rA1YiDyQm8SforWOUko5KKUctNablFLT7R6ZEHZ08WoiY5cFsebQRRp7lePbIa3wr25OZJ4cZ3TP3PmlMT5 /2 NIRdkchRRROQm8UcrpcoAfwA/KqUiMPrzC1Ho2Gyan/acZvrqwySn2RjRoyHPtq Fs6M5aNqx9bDydYg DS3 ZTTtyOQooojJTeLfCpQHXgUGA27ARHsGJYQ9HI 4xsjFB/kz9Ar31PFgSl9/fDzN4RSuRcDvIyBoEXjUg6GrwOdeawMWwk5yk/gVsAa4DPwCzNdaR9k1KiHyUHKqja 2nOCLjccpWcKR9wc04dGW1Y0umjabMZjaujGQkgAdR0L718HJxeqwhbCb3PxydwIwQSnVBBgIbFFKhWutZbhBUeDtP32FEYsOcvTiNR5q4sW43r5ULGsm9cgjxuQop3dAzfbw0MdQsb61AQuRD25ndM4I4AIQBWQ7nLIQBcG1pFRmrDnCdztDqVLOlW HBNC5kTkWfkoibPsI/vjIGDnz4S Myc7l5q0oJnLTj///MK70KwILgX9rrYPtHZgQd2pDyEXGLA3i/NVEhrTz4a1uDSjjYh7qp/4wJkeJOg7 j0G3KVCmorUBC5HPcnPFXxN4TWt9wN7BCHE3ImOTmLD8ECsOnqd 5TIsevIeWni7GyvjL8PaMXBgHrj7GMMm15Vho0TxlJs2/hH5EYgQd0prza/7wpm8MoSE5DTe6FqfF 6vQwknB2NylIMLYM0oSIw2btx2eAdKlLI6bCEscyczcAlRYIRFxTFycSA7TkTRysedqf2aULdSGWPl5ZPG5CgnN0G1AOj9KVTxszZgIQoASfyiUEpNs/HNtlN8vO4oJRwdmNzXj8dbeePgoIzJUXZ8Dlumg4Mz9JwBAc/I5ChCmCTxi0InMDyG4YsOEnz Kg82rszEPn5UcTMHjj3zpzG TsQhY4z8Hu9DuarWBixEAWNJ4ldKvQr8G PHYf/TWn9iRRyicIlPTuXjdUf5dtspPMq48NXgFnT38zJWJsbAhonw57dGoh/0MzTsaW3AQhRQ Z74lVJ GEm/NZAM/K6UWqm1PpbfsYjCY vRSEYvDeTM5QQeb 3NiB4NcSvpbNy8DfnNmBwlLgLavAAPjAYXmUdIiOxYccXfCNiltY4HUEptAfoC71sQiyjgrsQlM2llMIv3n6W2Z2nmD2tLm9oexsroM7DqbTi6Gqr4w M/Q7UW1gYsRCFgReIPAiYrpTyABKAnsDdzIaXUMGAYgLe3d74GKKyntea3v88xYXkwVxNSeLlTXV5 oC6uzo7G5Ci7v4aN7wEaHnwP2vwfOMotKyFyI9/PFK11iDme/zrgGvA3WQzzrLWeBcwCCAgIyGrSd1FEhV JZ/SSILYcjaRpjfJM7 9PwyrmvLbn/4bfXoHzB6BuV2NyFPea1gYsRCFjySWS1vpb4FsApdQUINyKOETBkmbTzN0RyodrjwAwrndj/tXOB0cHBUnXYPNU2DUTSnnCgNng20/G1xHiDljVq6eS1jpCKeUN9APaWRGHKDhCzl9lxKKD/B0eQ8cGFXnvET qu5u/rj26Bla CTFnoOVQ6DIeSrpbGK0QhZtVjaKLzDb FOAlrfUVi IQFktMSePzjcf4estJ3Eo68 mgZjzctKoxVn7sBVg9HIKXQsWG8PTvUFOuEYS4W1Y19dxnRb2iYNl1MoqRiwM5dSmO/i2q826vRriXLmFMjrJ3NqyfAKmJ0OlduPdVcCphdchCFAnSDULku5j4FKauDuGXP89Qo0JJfni2NffVM4dGjggxfnl7Zjf43AcPfQKeda0NWIgiRhK/yDdaa1YHXWDcb4eIupbE8x1q81qX pQs4WhMe7h1Bmz/FFzKQJ Z0OwJuXkrhB1I4hf54kJMImOWBbEu CK VcsxZ2gr/Kq5GStPbjEmR7l8EpoMgm6TobSntQELUYRJ4hd2ZbNpftxzmvdXHyY5zcbIHg15tn0tnBwdIC4K1o6Gv38G91rw1FKo08nqkIUo8iTxC7s5HhHLiEWB7A27wr11PZjS15 aHqWN8XUO/ARrRkPSVbjvTejwNjiXtDpkIYoFSfwizyWlpvHfzSeYuekEJUs48sGAJgxoWd3oohl1wmjWObUVarQxbt5Wbmx1yEIUK5L4RZ7aF3aFEYsOciziGg83rcrY3o3xLOMCqcnGjdutH4CTK/T6CFo DQ4OVocsRLEjiV/kidjEFD5Yc4QfdoXhVc6VOUNb0alhJWPl6V1GF83Iw9D4EegxHcpWsTZgIYoxSfzirq0PvsiYZUFcuJrIkHY vNWtAWVcnCAhGtaPh31zwK0GPD4fGnS3Olwhij1J/OKORcQmMmF5MCsPnqdB5bJ8 WQLWni7GzdvgxbD7yMgLhLavgSdRhn984UQlpPEL26b1ppf94YzeVUICclpvNm1Ps/fX4cSTg4QfdoYUO3YWvBqCk/Mh6rNrQ5ZCJGOJH5xW0IvxTFqSSA7TkTR2qcCU/r5U7dSGUhLhR1fwqYpgIJuU6D18zI5ihAFkJyVIldS0mz874 TfLr GCWcHJjS159BrWrg4KDg3F/G5CgXDkL97tBzBpSvYXXIQohsSOIXt3QwPJrhiwIJOX V7r5VmNDHl8rlXI3JUTZNht1fQelK8Oh30LiPjK8jRAEniV9kKz45lY/WHmX29lN4lnHhq8Et6e5ndsM8shpWvgVXz0LAM9BlHLi6WRuwECJXrJqB63XgOUADgcDTWutEK2IRWdtyNJLRSwIJv5LAE228Gd69IW4lneHqeVj9DoT8BpUaw6NzoEZrq8MVQtyGfE/8SqlqwCtAY611glJqATAImJvfsYibXY5L5r0VwSz 6yy1K5ZmwfPtaF2rgjE5yp7/wYaJkJYMncdCu//I5ChCFEJWNfU4ASWVUilAKeCcRXEIk9aaZQfOMXFFMFcTUnjlgbq82Kkurs6OcPGQ8cvb8D hdkdjuAWPOlaHLIS4Q/me LXWZ5VSM4DTQAKwVmu9NnM5pdQwYBiAt7d3/gZZzJy5HM/opUFsPRpJsxrlmdbfn4ZVyhmTo6yfDjs N9rv 86CJo/JzVshCjkrmnrcgT5ALSAa FUpNVhrPS99Oa31LGAWQEBAgM7vOIuDNJtmzvZTfLj2KA4KxvduzFPtfHB0UHBiI6x4Ha6EQrPB8OAkKFXB6pCFEHnAiqaeLsAprXUkgFJqMXAPMC/HZ4k8FXzuKiMXH Tv8Bg6NajIe339qVa JMRdgjWj4OB8qFAHhiyHWh2sDlcIkYesSPyngbZKqVIYTT2dgb0WxFEsJaak8dmGY8zaehK3ks589nhzejfxQgH8NQ/Wvmv0z /wjjFBirOr1SELIfKYFW38u5VSC4H9QCrwF2aTjrCvHScuMWpxIKFR8QxoWZ3RPRvhXroEXDpmNOuE/gHe7YzJUSo1tDpcIYSdWNKrR2s9DhhnRd3FUUx8ClNWhTB/7xm8K5Ri3rNtaF/PE1KTYPN0 GOGMe1h70 h b9kchQhijj55W4RprVmVeAFxv12iCvxyTx/f21e61yfkiUcIWyH0UXz0lHw6w/dpkLZylaHLITIB5L4i6jzMQmMWXqI9SEX8a1ajrlPt8KvmhskXIHfxsL 78HNG55cCPW6Wh2uECIfSeIvYmw2zY 7w5j xFSbTZG9WzIM/fWwslBQeBCY3KU Mtwz3 g40goUdrqkIUQ UwSfxFy7GIsIxYHsi/sCu3rejKlrz/eHqWMvvgr3oATG4xJUQYvBq8mVocrhLCIJP4iICk1jZmbTjBz83FKuzjx4aNN6deiGsqWCts/hU1TwcERuk H1v82/hZCFFuS Au5fWGXGb4okOMR1 jTrCpjHmqMZxkXCN9n3Ly9GAgNekLPD8CtutXhCiEKAEn8hVRsYgrv/36EebvDqOpWkjlDW9GpYSVIvAqrxsCeWVC2CgycB416Wx2uEKIAkcRfCK0LvsiYpUFcjE1k6D0 vPVgA0q7OEHIClj1NsSeh1bPQecxMjmKEOImkvgLkYjYRMb/dohVgRdoWKUs/x3cgube7hBzFpa8A4dXQCVfeOx7qNHK6nCFEAWUJP5CQGvNgr1nmLwyhMRUG293a8CwDrVxVhp2fw0bJoEtFbqMh3Yvg6Oz1SELIQowSfwF3KlLcYxcfJBdJy/TplYFpvbzp3bFMnAhCJa/Amf3QZ0HjMlRKtSyOlwhRCEgib ASkmzMWvrST7dcAwXJwem9vNnYEANHFITYN1Y2PEFlHSHft A/wCZHEUIkWuS Augv89EM3zRQQ5fiKWHXxUmPOxLpXKucHy98UOs6DBoPhi6yuQoQojbJ4m/AIlPTuXDtUeZs/0UFcu68PVTLenmWwWuRcDClyBoIXjUg6Erwae91eEKIQopSfwFxJajkYxeEkj4lQQGt/Xmne4NKefiZAymtnYMpMTD/SPgvjfAycXqcIUQhZgVc 42AOanW1QbGKu1/iS/YykIoq4lMWlFMEsPnKNOxdIseL4drWtVgMij8PNrELYdat5rTI5Ssb7V4QohigArZuA6AjQDUEo5AmeBJfkdh9W01iz56yyTVgRzLSmVVzrX46VOdXAh1RhbZ9tH4FwKHv7cmOxcJkcRQuQRq5t6OgMntNZhFseRr85cjmfUkkD OHaJ5t7lmd6/CfUrl4XQ7cb4OlHHwP9R6DYFylSyOlwhRBFjdeIfBPyc1Qql1DBgGIC3t3d xmQ3qWk25u4I5cO1R3FQMOFhXwa3rYlj4hVY9jL89QOUrwmDF0HdLlaHK4QoopTW2pqKlSoBnAN8tdYXcyobEBCg9 7dmz B2UnwuauMWHyQg ExdG5YiUmP FHVzdWYHGXNSHNylJeNG7glSlkdrhCiCFBK7dNaB2RebuUVfw9g/62SfmGXmJLGpxuOMWvrSdxLOfPFE83p5e FuhIK896AExuhWkt4aglU8bc6XCFEMWBl4n cbJp5ioodxy8xakkgoVHxPBZQnVE9G1HeRcH2T2DzdHBwgh4fQKtnZXIUIUS sSTxK6VKAV2B562o396i45OZsiqEBXvDqelRip ea8M9dT0hfK85OUoQNHwIerwPbtWsDlcIUcxYkvi11vGAhxV125PWmpWB5xn/2yGuxKfwwv11eK1LPVzT4mDlW/DnN1DWCwb9BA17WR2uEKKYsrpXT5FxLjqBscuCWB8SgX81N757pjW Vd0gZLk5OcoFaPM8PPAuuJS1OlwhRDEmif8u2WyaebvDmL76MGlaM7pnI56 1wena fg5/ DIyuhsj8M/BGqt7Q6XCGEkMR/N45ejGXEooPsPx3NffU8mfyIP97uLsZ8txsngS0Nuk6Eti/K5ChCiAJDEv8dSEpN48tNJ/jv5uOUcXHio8ea0rd5NdSFQPjmVTi33/gBVq8Pwd3H6nCFECIDSfy3aW/oZYYvOsiJyDgeaVaVMQ81xqNEKqwbAztnGuPj9/8W/PrL5ChCiAJJEn8uXU1M4f3fDzNv12mqlS/JnKdb0alBJTi2zpgcJeY0tBgCXScYM2MJIUQBJYk/F9YeusCYZUFExibxzL21ePPB pROjoJfn4ZDi8GzATy9GmreY3WoQghxS5L4cxBxNZFxvx1iddAFGlYpy9dPBdCsWjnY/x2sHwcpCdBxFLR/TSZHEUIUGpL4s2CzaebvPcOUVSEkpdp4u1sDhnWojXPUUZgzEM7sgprtofcn4FnP6nCFEOK2SOLP5GTkNUYuDmT3qcu0qVWBqf38qV3eCbZMgW2fgEsZ6PMlNHtSbt4KIQolSfymlDQbs7ae5NMNx3BxcmBaP38eC6iBQ9gfxhSIl09Ak4HG5CilPa0OVwgh7pgkfuDAmWhGLDrI4Qux9PSvwvjevlRyioffXoIDP4J7LWPY5DoPWB2qEELctWKd OOSUpmx9ghzd4RSuawrs55qyYONK8PB bBmFCTGQPs34P53wLmk1eEKIUSeKLaJf9ORCN5dEsTZ6ASealuTd7o3oGzcafi D5zaAtVbQe9PobKv1aEKIUSeKnaJP paEhNXBLPswDnqVCzNry 0o1X1MrDjU9j6ATiWgJ4zIOBZcHCwOlwhhMhzVk3EUh74BvADNPCM1nqnPevUWrN4/1neWxnMtaRUXu1cjxc71cHl3F74 lWIDIFGDxuTo5TzsmcoQghhKauu D8FftdaDzAnXbfr7OKno IZvTSQP45dooV3eab1b0L9cmnw 1uwdzaUqw6P/wINetgzDCGEKBDyPfErpcoBHYChAFrrZCDZHnWlptmYvf0UH607ipODA5P6 PJka28cDi DH4ZDXKQxZHKn0Ub/fCGEKAasuOKvDUQCc5RSTYF9wKta67i8rmj4okAW7Q nS6NKTOzjR1Ui4ZdBcGwNVGkCT8yHqs3zulohhCjQlNY6fytUKgDYBdyrtd6tlPoUuKq1HpOp3DBgGIC3t3fLsLCw264r6GwMYVHx9PT1RO3 GjZNAbRxhd/mBXAsdve2hRDFiFJqn9Y6IPNyKzJfOBCutd5tPl4IjMhcSGs9C5gFEBAQcEefTn7V3PBTJ GbgXD b6jXDXrNgPLedxq7EEIUevme LXWF5RSZ5RSDbTWR4DOQLBdKtvyAWyeAqUrwoA54NtXxtcRQhR7VrV1/Af40ezRcxJ42i61VKhlTI7SZTyULG XKoQQorCxJPFrrQ8AN7U75Tn/AcY/IYQQ/5CfpgohRDEjiV8IIYoZSfxCCFHMSOIXQohiRhK/EEIUM5L4hRCimJHEL4QQxYwkfiHE/7d3ZqFyFFEY/n7EEKOixrjEXUHEBcWg4oY7YgJuD4IiGjEgPgT0QSEiiKAgCvogqOAGKi4vbkEUdwkYFGMwG3FJRDAmJhqDy4P78aHranszS/fcrpmb9P9BMzW19X9PnTm3uqan2rSMoW/SNgiSvgPq79JWMAP4vkE5TWFd9bCuelhXPSarLpiYtoMjYq/xmdtE4J8IkpZ02p1u1FhXPayrHtZVj8mqC/Jo81KPMca0DAd Y4xpGW0I/A PWkAXrKse1lUP66rHZNUFGbRt92v8xhhj/k8bZvzGGGNKOPAbY0zL2C4Cv6TLJK2S9Hd6mHu3ehdI kzSGkkLSvnTJb0p6Yv0ukdDuvr2K kISZ Ujp8k3ZjKbpf0Tals72/moQAABPtJREFUzrB0pXpfSVqRzr2kbvscuiQdKOldSavTmN9QKmvUXt38pVQuSfen8uWSZlVtm1nXlUnPckmLJR1XKus4pkPSdZakH0vjc1vVtpl13VzStFLSX5Kmp7Is9pL0uKRNklZ2Kc/rWxGxzR/AkcARwHvACV3q7ACsBQ4DpgDLgKNS2T3AgpReANzdkK5a/SaN31L86ALgduCmDPaqpAv4Cpgx0b rSV3ATGBWSu8KfF4ax8bs1ctfSnXmAK8BAk4GPqzaNrOuU4E9Unr2mK5eYzokXWcBrwzSNqeucfUvBN4Zgr3OAGYBK7uUZ/Wt7WLGHxGro3hwey9OAtZExJcR8TvwHHBxKrsYeCKlnwAuaUha3X7PBdZGxKC/Uq7KRP/ekdkrIjZExNKU/hlYDezf0PnL9PKXst4no ADYHdJMyu2zaYrIhZHxJb09gPggIbOPSFdmdo23fcVwLMNnbsrEbEI KFHlay tV0E/orsD3xder O/wLGPhGxAYrAAuzd0Dnr9ns5Wzvd/HSp93hTSyo1dAXwhqSPJV03QPtcugCQdAhwPPBhKbspe/Xyl351qrTNqavMPIqZ4xjdxnRYuk6RtEzSa5KOrtk2py4kTQMuAJ4vZeeyVz y tZIHrY CJLeAvbtUHRrRLxcpYsOeRO l7WXrpr9TAEuAm4pZT8E3EGh8w7gXuDaIeo6LSLWS9obeFPSp2mmMjAN2msXig/ojRHxU8oe2F6dTtEhb7y/dKuTxdf6nHPritLZFIH/9FJ242NaQ9dSimXMX9L3Ly8Bh1dsm1PXGBcC70dEeSaey179yOpb20zgj4jzJtjFOuDA0vsDgPUpvVHSzIjYkC6nNjWhS1KdfmcDSyNiY6nvf9OSHgFeGaauiFifXjdJepHiMnMRI7aXpB0pgv7TEfFCqe B7dWBXv7Sr86UCm1z6kLSscCjwOyI2DyW32NMs sq/YMmIl6V9KCkGVXa5tRVYqsr7oz26kdW32rTUs9HwOGSDk2z68uBhalsITA3pecCVa4gqlCn363WFlPwG NSoOMdADl0SdpZ0q5jaeD80vlHZi9JAh4DVkfEfePKmrRXL38p67063YFxMvBjWqKq0jabLkkHAS8AV0XE56X8XmM6DF37pvFD0kkU8WdzlbY5dSU9uwFnUvK5zPbqR17favrb6lEcFB/ydcBvwEbg9ZS/H/Bqqd4cirtA1lIsEY3l7wm8DXyRXqc3pKtjvx10TaP4AOw2rv1TwApgeRrcmcPSRXHXwLJ0rJos9qJYtohkk0/SMSeHvTr5C3A9cH1KC3ggla gdEdZN19ryE79dD0KbCnZZ0m/MR2SrvnpvMsovnQ dTLYK72/BnhuXLts9qKY5G0A/qCIXfOG6VvessEYY1pGm5Z6jDHG4MBvjDGtw4HfGGNahgO/Mca0DAd Y4xpGQ78xhjTMhz4jTGmZTjwGzMAkk5Mm8FNTb/wXCXpmFHrMqYK/gGXMQMi6U5gKrATsC4i7hqxJGMq4cBvzICkvVI An6l2H7grxFLMqYSXuoxZnCmA7tQPAls6oi1GFMZz/iNGRBJCymegHQoxYZw80csyZhKbDP78RszmZB0NfBnRDwjaQdgsaRzIuKdUWszph e8RtjTMvwGr8xxrQMB35jjGkZDvzGGNMyHPiNMaZlOPAbY0zLcOA3xpiW4cBvjDEt4x8j4/P6aIWdtAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"nontarN = 1_000\n",
"tarN = 1_000\n",
"nontar_rv = f_norm(-3, 0.5)\n",
"tar_rv = f_norm(-2, 0.5)\n",
"\n",
"run(nontar_rv, tar_rv, nontarN, tarN, \"Balanced dataset with normally distributed scores\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "s0JIJ_XW1VtG",
"outputId": "1e728a9f-1186-4950-cc8b-680431b25e56"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1 /AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy WH4yJAAAgAElEQVR4nO3dd3hb13n48e8LgHvvIVKiRFGDsiQPWbJkOx6xHa/Ema2daadp4jarTZsmzR5Nf0nTZjRx6jrDSZ14JY7jvbdkixItWYOSKFLi3psEB b5/XFBm6Y5QAnABS7O53nwgAAu7n0vAL44eO 554hSCk3TNC322cwOQNM0TQsNndA1TdMsQid0TdM0i9AJXdM0zSJ0Qtc0TbMIndA1TdMsQif0KCEi3xKR35sdR6iJSLOIXBb4 ysi8qsFlv2QiDwZgZh KyL/Fu7thIuIKBFZHfj7VhH5eojWu1xEnCJiD9x XkQ EYp1B9b3mIh8LFTr095KJ/QIEpEPikht4J mK/ABv8DsuCJFKfXvSqlPAIhIRSAxOWY8/gel1BXmRRh7lFI3K6W u9hyM79YF1hXq1IqXSnlO9245mqgKKWuUkr97nTXrc1PJ/QIEZEvAD8B/h0oApYDvwCuMzMuLbJmfoFFk2iNS1sandAjQESygO8An1ZK/VkpNa6U8iilHlJKfXGe5/xRRLpFZEREXhSRDTMeu1pEjojImIh0iMg/B 7PF5GHRWRYRAZF5CURmfM9FhF7oARyIrCeV0WkPPDYDhHZG9j2XhHZMeN5z4vId0VkV B5T4pI/ozHPyIiLSIyICJfnbXNma22FwPXw4FfLNtF5EYR2Tlj dOJY97XbyEislpEXgg8r19E7pnx2AYReSrw2vaIyFcC9yeJyE9EpDNw YmIJAUeu1hE2kXkSyLSDdwuIjYR XLgtR8QkXtFJHeBmL4Y EXXKSIfn/XY6 Wj d5/EbkDowHxUOC1/pcZv5D RkRagWfn tUEVIrInsDr8cB0nNP7NSuWZhG5TESuBL4C/HVgewdmvGfTv9BsIvK1wGelV0T T4z/k5m/3j4mIq2B9 GrM7azVYxfuqOB9 FHwby38UAn9MjYDiQD9y/hOY8BVUAhsA/4w4zHfg18SimVAZwBPBu4/5 AdqAA41fAV4D5xnb4AnADcDWQCXwcmAj8wz4C/DeQB/wIeERE8mY894PATYHYEoHpL5Rq4H AjwClgeeXzbP9twWuswM/81 Z eDpxBGw0Ou3kO8CTwI5gdh/FognA3gaeDywb6uBZwLP SpwHnAmsBnYCnxtxjqLgVxgBfBJ4HPAu4GLAusaAm6ZK5hAcvxn4PLA/ixUNpnz/VdKfQRoBd4ZeK3/Y8ZzLgLWA YZ50fxfhslAJejPdjQUqpxzF id4T2N7mORa7MXC5BFgFpAM/n7XMBcBa4O3AN0RkfeD nwI/VUplApXAvYvFFC90Qo MPKBfKeUN9glKqd8opcaUUi7gW8Dm6RYM4AGqRSRTKTWklNo34/4SYEXgF8BLav7Bej4BfE0pVa8MB5RSA8A1QINS6g6llFcpdRdwDHjnjOferpQ6rpSaxPhnOjNw//uBh5VSLwbi/jrgD3afZzmdOBZ7/RbiwUi8pUqpKaXU9C Ga4FupdR/Be4fU0rVBB77EPAdpVSvUqoP DbGl9o0P/BNpZQrEOungK8qpdpnxPd mbvs8VeB/TyslBoPLLtQ7MG /9O FfjFODnP43fM2PbXgb SwEHT0/Qh4EdKqZNKKSfwr8D1s16DbyulJpVSB4ADGF WYOznahHJV0o5lVK7QxCPJeiEHhkDQP48/7BvIUY55PuBn SjQHPgoemSwvswWtYtgfLA9sD9PwQagSdF5KSIfDmwvg8Ffvo6ReSxwLLlwIk5Nl8KtMy6rwVYNuN294y/JzBaV9PPbZt IJAEBoLZ51DGEcTrt5B/AQTYIyJ1M0oc871ec8XaErhvWp9SamrG7RXA/YHSyDBwFPBhtKrnWnfbjNuzX5OZ5nz/F9G2hMdbgASCex0XM9dr5uDNr8F8n7O/AdYAx8QoxV0bgngsQSf0yHgFmML4mR2MD2IcLL0MyAIqAvcLgFJqr1LqOoxywl8I/OQMtBr/SSm1CqMl wUReXug90h64HJVYF1tGD9XZ vESDgzLQc6goi7CyPxGcGKpGL8OpnLYi3H04ljwddvIUqpbqXU3yqlSjFa0r8Qo4vgfK/XXLEuD9z3 mpnLd8GXKWUyp5xSVZKzbVvb3pNA ueL/Y53/95Ypgvttlmb9sD9APjQOr0A4FWe8ES1jvXa YFehZ5HkqpBqXUDRif/x8AfxKRtMWeFw90Qo8ApdQI8A3gFhF5t4ikikiCiFwlIv8xx1MyABdG6zYVox4JgIgkBlrcWUopDzCK0bpDRK4V46CezLh/vi5ovwK KyJVYtgUqE8/CqwRo4ulQ0T GqgGHg5iV/8EXCsiF4hIIsaB4Pk Y30YpYhV8zx OnHM /otRkQ ICLTdf8hjMTkC2y3WET QYyDoBkisi2w3F3A10SkQIwDs98AFjqn4FbgeyKyIrDNAhGZr7fTvcCNIlId IL85gKxL/T 9zD/a72QD8/Y9neAPwW6NR4HkkXkGhFJwDhmkDTjeT1AhcxzUB7jNftHEVkpIum8UXNftCwpIh8WkQKllB8YDtx92l0trUAn9AhRSv0I40Dk1zCSWRvwGYwW9mz/h/ETtAM4AsyuEX4EaA6UE24GPhy4vwrjwJ0T41fBL5RSz88T0o8wksWTGP/8vwZSAnX0azEOsA1glCCuVUr1B7GPdcCngTsxWpZDGAfp5lp2AvgesCtQejhv1uOnHAeLv34LOReoEREn8CDweaVUk1JqDOPA5DsxSgENGAf0AP4NqAUOAocwDsIudOLSTwPrflJExgLxbZtrQaXUYxjdXZ/FKKc8O9dyAQu9//8P40tnWAK9ooJ0B/BbjH1OxjigO91I XuMhkEHRot95nv9x8D1gIjs461 E1j3i0ATxi/YzwYZ05VAXeA9 ilw/aySVtySxY ZaJqmabFAt9A1TdMsQid0TdM0i9AJXdM0zSJ0Qtc0TbMI0wbkyc/PVxUVFWZtXtM0LSa9 uqr/UqpgrkeMy2hV1RUUFtba9bmNU3TYpKIzHu2sC65aJqmWYRO6JqmaRahE7qmaZpF6ISuaZpmETqha5qmWYRO6JqmaRahE7qmaZpF6ISuaZpmETqha5qmWYRpZ4pq2kLurGl90 0Pbpt35jVN0wJ0C13TNM0idELXNE2zCF1y0bRoUnv7/I9tuSlycWgxSbfQNU3TLEK30DUt0hZqhWvaadAJXYsKs3u1aJq2dLrkommaZhE6oWuaplmETuiapmkWoRO6pmmaReiErkWV7tEpxl1es8PQtJike7loUaFzeJLHD3fT2OckwS5sqcjlsnVFpCTazQ4tvPw 6DsKbXvAMwnJmVC2FQrWmh2ZFoOCaqGLyJUiUi8ijSLy5TkezxKRh0TkgIjUiYg pU0LWufwJL986SRdI5O8Y0MxG5dlU3NygLv2tOJXyuzwwmdiAHb9GPb CoaawO Fvnqo R84fB/4PGZHqMWYRVvoImIHbgEuB9qBvSLyoFLqyIzFPg0cUUq9U0QKgHoR YNSyh2WqDXLUErx1fsP4VeKv7u4ity0RAAq8lL58/4Onjnaw XVxSZHGQb9DfDq7aD8cOaHofQssNnB54ZjD0PTi0ZC33y92ZFqMSSYkstWoFEpdRJARO4GrgNmJnQFZIiIAOnAIKALodqi7t/fwXP1fVyzseT1ZA6wpSKXloEJnqvvo7Ig3cQIw2DwJOz9JaTkwrmfgLT8Nx6zJ8KG94ItAU48AwVroPRs82LVYkowJZdlQNuM2 2B 2b6ObAe6AQOAZ9XSvlnr0hEPikitSJS29fXd4oha1bh8yv 68njbC7PZntl3lsef9eZpWSnJPDooS78fouUXnrqYM9tkJwF2z/95mQ 09qrIXsFHLwXJocjG6MWs4JJ6DLHfbP/u94BvAaUAmcCPxeRzLc8SanblFJblFJbCgoKlhysZi3PHuulY3iSv7toFTZ568cswW7j8uoiOkemePBApwkRhtjkMNz9IbAnwXl/D0kZ8y9rs8NZHzFKMCeeiVyMWkwLJqG3A UzbpdhtMRnugn4szI0Ak3AutCEqFnVHbtbKMpM4rL1RfMus7k8m9LsZH74RD1THl8Eowsxvx/uvxlG2uCcGyElZ/HnpOVD2bnQuhumRsMeohb7gknoe4EqEVkpIonA9cCDs5ZpBd4OICJFwFrgZCgD1ayluX cF4/38cGtK3DY5/8Y2kS4ckMJHcOT3LUnhgfw2nMbHH8Mrvge5K4M/nmVlxm9X04 H7bQNOtYNKErpbzAZ4AngKPAvUqpOhG5WURuDiz2XWCHiBwCngG pJTqD1fQWmy7s6aVr//lMDaBJIdt0ZEWVxems31VHrc8d4JJdwy20gdOwNPfgtWXw7ZPLe256QVGD5iWXbqWri0qqH7oSqlHlVJrlFKVSqnvBe67VSl1a DvTqXUFUqpjUqpM5RSvw9n0FpsU0pxsGOENUUZZKYkBPWcL1yxhn6nizt2N4c3uFDz HBz4I9Ad75U5jjWMGiVl4EPhcceSD08WmWok/91yKufWiSkUkPZyzLCvo551bkcmFVPre cDK2hgY4dK/Run7H9yBrduewIGUvh7QCo8eLpi1AJ3Qt4g53jmATWF/8lo5QC/rC5WsYHHfz25ebwxNYqLkn4OlvGyWTMz986usRMQ6OtuyE4Rg jqCFnR7LRYsopRR1naNUFqQveZyWs5bncOm6Qm578SQf2b6CzOTgyjVhs9iEzq/8HMY64f2/Bttptp2WnQP1j8JjX4aqy fenhb3dAtdi6gjXaMMjrs5ozT4cstM/3jZGkYmPdy szm0gYXa ADs/Amsfxes2HH660vNg9xV0FF7 uvSLEsndC2inqjrQYD1pUsrt0zbWJbFFdVF/Oqlkww4XaENLpT23Aaecbjkq6FbZ lZ4OwBZ2/o1qlZik7oWkQ9d6yX5bmppCederXvX65cy6THx38 WR/CyELI64I9/wtrr4HCEJ5fV7jBuO6pC906NUvRNXQtYvrGXBzqGOGK6vnPDJ3P7L7qN 6o4Ne7mvjQthVL6i0TEa27YXII8lcvXGdfqtRcyCiB3jqovCR069UsQ7fQtYh54bgxINuaogXGMAnS5y6rIi8tkW88cDi6Bu5Sfmh63qh35yzhjNBgFW0wRmv0TIR 3VrM0wldi5jn63spyEiiJCv5tNeVmZzAv161nn2tw/whmoYE6Ks3WucVF4Zn/YUbjC NvmPhWb8W03RC1yLC6/PzUkM/F60pQE7lbMk5vPfsZVxYlc8PHjtG18hkSNZ52tpqICENijaGZ/05K4z19xxZfFkt7uiErkXEa23DjEx6uHht6IZNFhG 9 6NeP1 vv6Xwyizp6tzO6H7EJSdA/YwHZ4SGxSuN1rob51yQItz qCoFhEvHu/DJnDh6gIeOdQVsvUuz0vlny5fy/cePcqjh7q5ZlMJ8NaDqAAf3LY8ZNudU/uroHxQfl54t5NfZfRHH uGzNLwbkuLKbqFroXdnTWt3L /g2XZKSFN5tNuOr Cjcuy OaDhxmeMHEa2469kFUe/iSbv8a47j8e3u1oMUcndC3sJt0 2ocmWV14 r1bpt1Z0/r65d7adr7/vo0MTXj4weMmHSwc74eRduPkn3BLyYHUfBhoCP 2tJiiE7oWdif6nCiMcc3DZUNpFjfuqOCevW3Ud4 FbTvz6j5oXJdsjsz28tcY46z7Y3B8eC1sdELXwq6xz0miw8by3NSwbePOmlZKspJJdNj47F37wradeXUdgKwyY8yVSMivAu UMaWdpgXohK6FXWOvk1X5adhtoemuOJ/URAeXrC3keI Txl5nWLf1JpPDMNwCxRFqnQPkVRnX/brsor1BJ3QtrNoGJxgcd4e13DLT9lV5ZKck8OyxCA5g1X3AuI5UuQUgKR0ySnUdXXsTndC1sHqpwZhadnVBZBK6w25jR2UezQPjdAxF6GSjnjpIL4L0wshsb1peJQw16zq69jqd0LWQm9kD5c6aFjKTHRRkJEVs 1sqckly2Nh1IgLzlHtdMHgCCqvDv63ZcivB59Z1dO11OqFrYeNXihN946wuzAjZ6f7BSE6ws2VFDgfbjbNTw2qg0WghF64P73bmkldpXA ejPy2taikE7oWNp3Dk0x6fBGrn8 0vTIfpWBv82B4N9R7FOyJkLMqvNuZS1KGUeYZOBH5bWtRSSd0LWyme5qYkdBz0xKpLEjntbbh8I3xohT0HTX6hIdr7JbF5FYaJR9dR9fQCV0Lo4ZeJyVZyac1O9Hp2FyezeC4m7ZwHRwd74OJASgI4axES5VbafRH17MYaeiEroWJ2 undWAiYr1b5rKhNBOHTXitbTg8G g7alybUT fNl1Hb3nZvBi0qKETuhYWTf1OfEqZUm6ZlpxgZ11JJofah/GFY1aj/gZjTJVInR06l5QcSMmFll3mxaBFDZ3QtbA43uMkwS5U5KeZGseZZdmMu32c6AvxmaM r9HDJb8qtOs9FXmVRgvd7PHgNdPphK6FxfGeMVblp5NgN/cjtqYonUS7jaNdo6FdcdcBo3YdDQk9txIm vUwAJpO6FroDThdDIy7WVNkXrllmsNuY3VhOvXdY6Ht7dL0gnGdFyUJHXTZRdMJXQu94z3G8LVrikI3/vnpWFucwfCkh/qeEA6r2/QiZJQYfcHNlpYP6cX6wKimE7oWesd7nOSlJZKXHrnT/ReyNvDFErIBu7wuaN0dHa1zABFYscNooes6elzTCV0LqSmPj5P9TqqipHUOkJmSQGl2Ms FKqG314J3Mjrq59NW7IDRDmMYXy1u6YSuhdSepkE8PsXaKKifz7S2KJNXW4ZCM doyy5A3qhdR4MV5xvXuuwS13RC10LqheN9OGzCyvwoS jFGfgV7GwMwQiMLbug6AxIDN8MTEtWsM7ok64PjMY1ndC1kHq vpeV WkkOqLro7UsO4X0JAe7Tw6c3op8HmjbY5Q4oonNBst36BZ6nIuu/zotprUNTnCibzxqerfMZLcJ51bk8MqJ00zona BZyL6EjoYMQ2ehNEusyPRTKITuhYyLxzvA6Aqyurn05Icdk70jXPrCye4s6b11FYyXdKI1oQO0Kpb6fFKJ3QtZJ6v76MsJ4WCKOmuONuqAmMYgqa 8VNfScvLRnfFSE83F4ziTZCYAc26jh6vdELXQsLl9fHyiX4uXlsQ0dmJlqI0O4Ukh42T/aeY0P0 o/95NLbOwRiTffk2XUePY0EldBG5UkTqRaRRRL48zzIXi8hrIlInIi ENkwt2r18YoAJt4 3rysyO5R52URYmZ/GyVMdqKunDlwjUHFBaAMLpRU7jGF9x0/zWIEWkxZN6CJiB24BrgKqgRtEpHrWMtnAL4B3KaU2AB8IQ6xaFHuyroe0RDs7Vps4lGwQVuWnMTDuPrW5RqdbvtHaQoc3 qO3vmJuHJopgmmhbwUalVInlVJu4G7gulnLfBD4s1KqFUApFaJT8rRY4PMrnjrSw8XrCkly2M0OZ0Er8ow6euvgxNKf3LILspdDVlmIowqh0rPAkazLLnEqmIS DGibcbs9cN9Ma4AcEXleRF4VkY/OtSIR aSI1IpIbV9f36lFrEWd19qG6He6uKI6esst00qyk3HYhLalJnSljCQ53QKOVo4kKDtXn2AUp4JJ6HMd4Zo9ApADOAe4BngH8HURWfOWJyl1m1Jqi1JqS0FBwZKD1aLTE3U9JNiFS9ZFYc PWRw2G6XZKUtvofc3GGOOR3O5ZdqKHdB9EKZCPAa8FvWCSejtQPmM22VA5xzLPK6UGldK9QMvAptDE6IWzZRSPFHXzfbKfDKTE8wOJyjLc1PpHJ7E7fUH/6TX 59HeQsdjISu/MYZrVpcCWY69r1AlYisBDqA6zFq5jM9APxcRBxAIrAN HEoA9Wix8yTcnpGp2gZmOCTb1tlYkRLU56bys7Gfo50jXJmeXZwT2rZBelFkBsD 1l2Ltgc0LITqi4zOxotghZtoSulvMBngCeAo8C9Sqk6EblZRG4OLHMUeBw4COwBfqWUOhy sLVoUdc5ighcvj766 fTlucag2rtaxkK7glKGSfrrNhhjD0e7RLToPRsfWA0DgXTQkcp9Sjw6Kz7bp11 4fAD0MXmhYLjnaNclZ5NoWZyWaHErSslASyUhLY3zYc3BOGW2CsMzbKLdNW7IBXbgH3RHSNCqmFlT5TVDtlwxNuOoYnuWJDsdmhLFl5bmrwLfTmGKqfT1txPvg90FFrdiRaBOmErp2yI11GL4pY6K442/LcVDqGJ kdnVp84ZaXISXXGHM8VizfBoguu8QZndC1U3aka5TCjCRWFUTn6IoLWZ6TAsC 1iDKLi07jRKGLYb XZKzoHij7o8eZ2LoE6pFkwmXl b capLMs0O5ZSUZqeQaLexv22RsstIBww1x1a5ZdqK86FtL3hDMO2eFhN0QtdOybGeMfwKqktjM6E77DaqSzPZ37JICz0Wxm Zz4odxmTWnfvNjkSLEJ3QtVNypHOUzGQHy7JTzA7llKUl2tnfNsQdr7TMP FFy05ICpQvYs30l5Auu8QNndC1JXN7/TT0jlFdmhm1Y58Hozw3FY9P0T2ywIHR5l2w/DywRfegY3NKy4f8tfrAaBwJqh 6ps3U2OvE41NUl2QBnPp0biabPsGodXCcZTlz/NJw9sJAA5z14QhHFkIV58PBP4LPa0yAoVmabqFrS3aka4TkBBsr89PMDuW0ZKUkkJHsoG1ocu4FpksV0TyhxWJWvg3cY9DxqtmRaBGgE7q2JF6fn6NdY6wrzsRui91yC4CIsDw3df6RF5t3QUIalMTwOHOrLgaxwYlnzI5EiwD9G0xbkr3NQ0x6fDHbXXG2M6WRuvFCCk78GexZb36w5WUo3wr2GBhFsvb2 R9bdg40PgOXfCVy8Wim0C10bUmeqOvGYROqimLvZKK5VKUZ5ZaG8Vlj0bjHobfOqEHHuspLoXMfTAyaHYkWZjqha0FTyphqbnVhetRPNResVWlT2FA0jM86KDp40riOxROKZqt8uzE epOeu93qdELXglbXOUrH8KRlyi0ASTbF8hQXjbMT kCjMTfnsnPMCSyUlp1j9KVv1HV0q9M1dC1oTx7pwSawzkIJHYyyy87BTPxqnNeP8w6eMCaDfu1OU2MLif13QE4FHH3IGCd99rkDW24yJSwt9HQLXQvaM0d7OHt5DulJ1moHVKVPMum3c2IsUEbyTBpjuORWmhtYKBWshalhcPaYHYkWRjqha0HpGZ2irnM0JiaCXqqqNONM0f0Dgd4sg02AgjwrJfTA0L99x8yNQwsrndC1oDx3rBeASy2Y0IuT3KTZfewfnE7ojSB2o0xhFam5kFaoE7rF6YSuBeXZY72UZiWzrjjD7FBCziawOm2S/YOBUtLACcheDvZEcwMLtYJ1xr75PGZHooWJTujaolxeHzsb 7lkXWFMD8a1kNVpUxwfcTA 5YaRNmuVW6YVrDOmpZvukqlZjk7o2qL2NA0y4fZZstwyrSptEj9CS1ub0WfbSgdEp VVGqNG6rKLZemEri3q2WO9JDls7KjMNzuUsFkdOGN0ovekMfZJ7kqTIwoDR5LxRdV31OxItDCxVv8zLeTurGnlwdc6WZGXyv37O8wOJ2wyHH5WpnvJGjsOmWXGSUVWVLgejjxgDAOQmmt2NFqI6Ra6tqD MRcD427WFlvrZKK5bM1xUuE9icpbbXYo4VNYbVz3HjE3Di0sdELXFnSsZwyAdUXW690y22XJ9STgoz99jdmhhE9aIaTm64RuUTqhawuq7x6lMCOJnDSLdeGbw2Z1FI yU tfa3Yo4SNitNL7G8DnNjsaLcR0Qtfm5XR5ae6fYK0F 57PJd9ZzyG1itoRi 9v4Xqj 2J/o9mRaCGmE7o2r50NffiUiouEbvO5sI200Zy0ln0DMTChxenIW22cNKXLLpajE7o2r2eO9pKcYGNFbmzPHRqMjAmj/7knp4pDQw4mvWZHFEb2BMhfY0zgoZTZ0WghpBO6Nie/X/FcfR9VhRkxP3doMDLHm0HsFC9bgVfJG O6WFVhNUwOgbPb7Ei0ENIJXZvT4c4R p2uuCi3AGRONEPOCs4sEATFnv44SOgAvfokIyvRCV2b07PHehGBNXHQXdHumyJtsgvyVpOVqFif7WVvv8V79aRkQ0Yp9NSZHYkWQjqha3N67lgvm8uyLTeZxVwyJloRFORVAbA138O gQQ8fpMDC7eiahhqgslhsyPRQkQndO0t sZcHGgfsfRgXDNljjfjnzH bn5HiZ9Qt2wxb/MCquNgchOPGt2JFqI6ISuvcXz9dadzGIumePNOFPKjN4fGAkdYK/V6 g5FZCQCg1Pmh2JFiI6oWtv8Vx9L4UZSWwotf74LXbvJKlT3YymVbx X2GyMVDX7j6L19HFBgXroeEp8Fu9vhQfdELX3sTj8/PS8X4uWWvdySxmypxoReBNCR1ge6GHmr4EvFbPc0XVMNEPnfvNjkQLAZ3QtTf5/mPHGHN5cdiFO2tazQ4n7DLGm/GLA2fKsjfdf0GhG6fXxoEhi9fRC9YZLfWGJ8yORAuBoBK6iFwpIvUi0igiX15guXNFxCci7w9diFok1XePYRdhdUG62aFEROZ4M2Op5SjbmxP39gI3guLlXouXXRLToOxcOK4TuhUsmtBFxA7cAlwFVAM3iEj1PMv9ANCfjBhW3z3Gyvw0khLsZocSdknuIdJcPW8ptwDkJCmqs73s7LF4QgeougK6XoMxfdZorAumhb4VaFRKnVRKuYG7gevmWO6zwH1Abwjj0yKobXCCvjg6O7RwsBZ4o35e0zT4psv5hW72DyZYe1wXgDXvMK51Kz3mBZPQlwFtM263B 57nYgsA94D3LrQikTkkyJSKyK1fX19S41VC7MXG4z3pKooPsotRQN78EkC4ymlcz6 o9CD2zlYavwAAB8vSURBVC/WP2u06AzIWg71j5kdiXaagknoc3V1mD1E20 ALymlfAutSCl1m1Jqi1JqS0FBQbAxahGys6GfrJQECtKTzA4lIgoH9xr1c5m7vLQ1302CKHb2Wrw/ugisvQpOPgfucbOj0U5DMAm9HSifcbsM6Jy1zBbgbhFpBt4P/EJE3h2SCLWwurOmlTtrWvn97haer 9jdUF6XHRXTHINkO08MWf9fFqqA7YWeHiuOw6 4NZdDd4pOPGc2ZFopyGYhL4XqBKRlSKSCFwPPDhzAaXUSqVUhVKqAvgT8PdKqb EPFotbDqGJpn0 FhdGB/lluKBPQCMpq2cd5mapkEqE4doGHXw0LGxSIVmjhXnQ1KWLrvEuEUTulLKC3wGo/fKUeBepVSdiNwsIjeHO0AtMhr7nABUxklCLxqowe3IYDylZMHlzsoyXpf9Ixaf5MOeAFWXw/HHwb9g5VSLYkGdNaGUehR4dNZ9cx4AVUrdePphaZHW2OukJCs5LkZXBCge2E1P3rnGSTULKE32UJzkZt9IOjARmeDMsu5qOPwnaNsDK7abHY12CvSZohour4/WgYm4KbekTbSRPtlBT962oJY/K8tJ3VgqE1bvvrj6crAlQP0jZkeinSKd0DWa 8fxKRU3Cb24fzcA3XnnBbX82VlOPMpm/bNGkzNh5YW6jh7DdELXaOx14rAJFXkWrxMHFA/UMJFUuOAB0ZnWp0 SZPPzbDz0dll7NQw0Qt9xsyPRToFO6BoNvU4q8tJIsMfBx0H5KRqooTv/PKP/dRASbIpNmeM815WImn0GhtWsvcq41mWXmBQH/8HaQkYnPfSOueKm3JIzWk yZzjo vm0s7KcdE3aOTZi8TFussqgZDMce3TxZbWooxN6nJvurhgvCb1ooAaA7qUm9EzjDMr4KLtcA 179WBdMUgn9DjX2OskLdFOcVay2aFERPHAbkbSVjKZXLSk5 UmetmQ7eG5LosfGAWofheg4OhDZkeiLZFO6HFMKcWJXieVhenY4uB0f5vPTeHQPqN fgouLXazbyCBIZfFX6vC9ZC/Fur0yd6xJj7OItHmVN8zxpjLGzeTWeQPH8Dhm1xy/XzapSUufnYsjee7E3nPCleIozNR7e1vvS nwpg8eqwHMpb2a0Yzj26hx7GdDf1AfNXP/djoyT33lJ6/OddLYbKPJzrjoI5eciZG2eXBRRfVoodO6HFsZ2M/ emJZKfGQV0Yo34 mLUBT0LmKT3fJnBFqYsXupOYsvpwJxnFkF4IRx4wOxJtCXRCj1Mur4 ak4Nx0zpP8IySN3L4lOvn096xzMWkT3jR6lPTiRit9JZd4NSTkMUKndDj1L6WYWO43IL4mG6uuP8VbMpHV/4Fp7yOmqZBbOM9pNl9/KFeqGkaDGGEUajkTFB XXaJITqhx6mdjX3YbcKqgvg43b 0byduRwb92ZtOaz0OMcZ2eXU4HZ/VzxrNKIG8Kt3bJYbohB6ndjb0c2Z5NskJFj/zEUApSvp30ZW/HWU7/Y5d52aP4fTZOTqWGoLgopgIbHh3oOyi5wCOBTqhx6HhCTcHO0a4YHW 2aFERPZYPamuProKTr3cMtPmzHESxM e4TgoV1W/2yi7HNMnGcUC3Q89Dr18YgCl4MKqfI73OM0OJ w2NvwPAImuISpb/3ja60u2KzZnjlM7nI5SQ8GO8RWbijZA3mqoux 2fNzsaLRF6BZ6HHqpoZ/0JAeby7PNDiUispyNjCcX40kIXYt6a84YA54EDg5ZvE0kAme8D5pegtEus6PRFmHxT6M2l52NfZy3Ki8uhstN8IySMdFGZ/6OkK73nCwnNhSPdySxOdfCUxnV3h6Ypk/B41 CVZe88diWm0wLS5ub9f jtTdpGRinbXCSC6vio35e3L8bQTGSvjqk6013 KnOmIiPs0bTiyCrHDr2mR2Jtgid0OPMS4HT/S Ik4Re2r8Try2JsdTykK97a/YYJ8ccNI7GQU hZefASBs4e8yORFuATuhxZmdDP6VZyazKj4P 50pR0reLkfRVgbJBaJ2bbRxQfqIjDlrppWcBolvpUU4n9Dji8fl5rr6X0uwU7trTxp01rWaHFFbZY8dJdfWGvNwyLTfRy YcT3yUXZKzIL8KOl7F vPwxS6d0ONIbfMQLq fdcVx0H8aKO17CYDhMCV0MMZ2OTiUQOdEHPwrlZ4NE/0wbO2GQCyLg0 hNu25 l7sIlTGyfjnpX0vMpixLqTdFWcrUcbAVbcd8sXB2C6bweYwWulaVNIJPY48d6yXlflpJMXB6f7Jrn4Khl6jvejSsG6nNNlNWbKLvcNx8CWZkAKFG6BzH/itPn5wbNIJPU60DU7Q0OtkbZyUW5b1PIegwp7QwRjb5chYKqMe639RsuxscDthoMHsSLQ56IQeJ56vN0oDa4viI6GX9zzDWEoZwxlrwr6t83LGUAh74qGVXlgNjmRddolSOqHHiaeO9lKRl0p hvV7ZDg8TooGamgvfjuRGGhlRYqLkiQ3rwyd2kxIMcWeYNTSuw6CZ9LsaLRZdEKPA0Pjbl5u7OeqjSVmhxIRy/pewq68tBeGv9wCxnfGeTmj1I2lMuCy8khdAcvOAZ8L6h8zOxJtFp3Q48CTR7rx hXXxElCX979BJOJefTnbI7YNrcHyi6Px8NJRnmrISkTDp3 yJVaaOmEHgceOdTNirxUNpRavySQ4BmjtO8lWkuuREnkDlIuT3FRkuTi0fbkiG3TNGIzDo42PAUTFu qGWN0Qre4oXE3uxr7uWZjCWLpgbsNZT3PYPe7aS65KqLbFTFa6a/0JtA/Zf3XmdJzwO BIw YHYk2g07oFvdEXTc v LqOCm3VHQ9hjNlGQOnOXfoqTgvZww/Eh9DAWSVGfONHvqT2ZFoM iEbnF/erWdVQVpcVFuSXINUDRQQ3Pp1RHp3TLb8hQXqzK8PNIWD2UXgY0fgJadMNJudjRagE7oFtbQM0ZtyxDXn1seF WWFV2PY1M WiJcbpkmAtcsc7G7L07KLhvfb1wfvs/cOLTX6YRuYXfvbSPBLrz37DKzQwk/pVjd9icGss5gJKPKtDCuKZ/CHze9XSqNLowHdW XaKETukW5vD7 vK dy6uLyE 3fnLJGz5ItrORxvL3mRrH2kwfqzK8PBwPvV0ANv4V9ByC3qNmR6KhE7plPX64m6EJD9efu9zsUCJidft9eOwpppVbponAO8tc1PQl0D0ZB/9eZ7wPxA4H7jY7Eo0gE7qIXCki9SLSKCJfnuPxD4nIwcDlZRGJ3Bkd2lsopfj1ziYq8lK5YLX1p5pzeJys6HqclpKr8TrMnYmppmmQlbZuFMLPX/ObGkvY1d4Oxx6GgrXw6m9h76 N 2pvNzuyuLVoQhcRO3ALcBVQDdwgItWzFmsCLlJKbQK C9wW6kC14O0 OcjB9hE ceEqbDbrH5yr7PgLDt8kjeXvNzsUAEqSPaxOnWTnoPV7FgGwbAtMDcNAo9mRxD1HEMtsBRqVUicBRORu4DrgyPQCSqmXZyy/G4iDo3DRZ3pKud 93Exaoh2fX1l mjnxe1nbfAe9OWczmH2G2eG87oK8UX7bVkTD6DhVmRYfO7z4DGMExva9kB/ 0S21 QVTclkGtM243R64bz5/A8w5ao IfFJEakWktq vL/gotaD1jE5R3zPGeZV5JNitX8Nd3v0k6ZOdHF15o9mhvMn2nFFsKP7SGgcHR 2Jb4zA6HObHU1cC6aFPtdv9jlniRWRSzAS gVzPa6Uuo1AOWbLli16ptkwePZYL4l2G etzDM7lPBTivVNv2UkbSXJU31UtkZP97nsBB8bM8d5oDWFf94wbsZ5TpG1bAu01UD3IaMro2aKYJpw7UD5jNtlQOfshURkE/Ar4Dql1EBowtOWontkisMdI yozCMtKZjv6thW2vcSuaNHObbyY6acGbqYC3JHaZ w8 pAgtmhhF9eJaTkGGUXzTTBJPS9QJWIrBSRROB64MGZC4jIcuDPwEeUUsdDH6YWjGeO9ZDosHFBlfV7tqD8bD7 U8ZSyzm57F1mRzOnc7OdJNsVf2m1/nkAxgiMW6CvHqZGzI4mbi2a0JVSXuAzwBPAUeBepVSdiNwsIjcHFvsGkAf8QkReE5HasEWszelwxwh1naOcvzqf1ETrt85XdD1GzthxDlZ9GmWLzhZwit3P5aUuHmlPxmPxHowAlG0BlDGJtGaKoP7zlVKPAo/Ouu/WGX9/AvhEaEPTluInTx8nOcHG ZXWbZ1P18jF72VT4/8wnlSEwzMeVbXz2dYn9vGQu5xfHnBxTvY421bmmh1S KQXQVY5tOv2nFms3w0iDhxoG bpo71cWFVASqL1Z54vGXiZZM8QbcWXRWXtfKbNWeNkOLy8OJhldiiRUbYFRjugp87sSOKSTugW8OOnj5OdmsCOVdbv2ZLoHmZZ304GM9czkl5pdjiLcohxcLR2OB2nNw7 3UrPNurpeigAU8TBJ8zaXm0Z4vn6Pj71tkqSEizeOleKiq7HUCK0FF9hdjRBuzhvBK yxceZo0kZULDemG/Ub/ETqqKQTugx7sdPHScvLZGP7Vhhdihhlz98gBxnA 0FF NOiJ0SRkWqi5WpUzzXn212KJFRtgXGuqDpRbMjiTs6ocew7z1ylJ2N/Wxbmctf9r/l1ABLSZvooKL7cUZTV9Cdd57Z4SzZxXnDNE8mUzds/R5IFG2ApCxddjGBTugxSinF00d7yEhysM3itXNRPrYf/AoAJ5ZdF/UHQudyQe4oCeLnnqY4GQrgjPcYE0hPDpsdTVzRCT1GvdjQT1P/OBetLbD8mC3rmv6PwqF9NBdfiTsxNssW6Q4/5 WMcX9LMuPe2PtCWrJzbgTvJBy8x xI4oq1M4FF f2KHzx2jJzUBLZauV8zkD1az6bjP6Ot6FL6s2N7mP3LCoYZ89p4qC0OzhwtPcu41N4OSg/bFCk6oceghw52cqRrlMuri3DYrPsW2nxuth/8Cu6EDPZs GZMllpmWps2ybosL78/kRIfOe6cm6DvqDFolxYR1s0GFuX2 vnPJ tZX5LJprLYLD8Ea2PjLeSMHWfPGd/GlRT7v0RE4EOrJjk8nMCBoTg4OHrG yAxQ89gFEE6oceYO2taaBuc5EtXrsUW4y3WhRQM7qP65O00lr2PjqKLzQ4nZN69fIp0h5/fNKSaHUr4JaXDpr CuvthYtDsaOKCTugxxOny8rNnG9m Ko L1hSYHU7YOLzjbD/4FcZTStm3/otmhxNSGQmKG1ZO8Uh7Eh0TcfDvt Um8Ll0F8YIiYNPlHV8/q79DIy7ObM8m7v2tC3 hBh19tEfkjbZySub/t30SZ/D4caqCQBuj4dWevFGY1jd2t/og6MREAeFPGvoHJ7kxYY zijNpDzXuongnMP/xur2 jM30Gm8wSZzhNmhxRyy1L9XFPm4u6mZD5XPU5mgsUT3Zab4IFPQ8suqJhzMjMtRHQLPUb8 6NHUQquOqPE7FDCJtnVz6rOhxhPLqa94GKzwwmrT66ZwOm18bvGFLNDCb8N74XkLKj5X7MjsTzdQo8Br5wY4OGDXVy6rpCctESzwwkPpTjv4New 900lr0HZbP2R/OMHC Xlbi47XgqH62cJCvRYq302T1blm2Bow/Bi/8Jb/tnc2KKA7qFHsXurGnljlda Md7XiMnNcHSB0LXtN5Faf8uWosuZyrJuvtZ0zT4 uXy7E7GPDZ ddy6JbTXVVxo9NvUA3aFlU7oUa6maYDu0Smu3lhi2VP8M8dOcOaxH9FZcAE9uVvMDidiKlJdXFM2xW8aU ibsm4XVABSso0zR1t36zlHw8iaGcIinC4vTx/tYXVhOtUl1hxL2 Zzc/6BL G1p7J743dj/mzQpfrChnHcPuH7h9LNDiX8Vl1sdGGs/Y3ZkViWTuhR7InD3bi9fq7dVIJYNNFtavgZOWP11Gz8DlNJ1p0PdT6VGT4 sWaC 1pS2NsfnZNdh0xWORSshVduAc k2dFYkk7oUWpnQz vtg5xYVUBhRnWHHK1aKCG9U2/o6H8A5Y6G3SpPrt nNIUH1/fn4Hbb3Y0Ybb6Chjvg33/Z3YklqQTehSadPv4yv2HyEtL5NJ1hWaHExbJrn62H/gKY2kr2Lcuvns9pDrg22eNcWzEwX8dtt6JVG SVwnLd8Cun4LXZXY0lmPtvmEx6idPH6d1cIK/uWClJQ Erm65m3XNvyfJPciJsndT0fmI2SGZpqbJGOMkE7gsX/G/x3O4sMjNBUUecwMLp4u CHe8x2ilb/1bs6OxFOtlixh3uGOEX 1s4vpzy6kssOaBsvKep8mcaKGp9FomkovNDidqfLS8l7JkF/ wJ5O2cQv/a666BFZcAC/8AFxOs6OxFAt/amKP1 fnS/cdJDctkX 9ar3Z4YTFis7HKBmooTt3KwPZm8wOJ6ok2RT/uKoDt1 4cWc2w25rHghHBC77llFL3/0Ls6OxFJ3Qo8jf/WEfdZ2jXL6 iEcOdZkdTshljTWw7fA3GUstp7XocrPDiUplKW5 uWOEtnE7H9 ZzajHokm9/FxYdy3s m9w9podjWXohB4lDrYP88zRHjYuy2JDqfX6nKdM9XBx7afxONJoKHs/ymY3O6Sota3Aw39vG XQkIMbXshmwGXRpH7Zt8E7BU99w xILEMn9Cgw4fbyD3e/RkZyAu8 c5nl pwneEa5uPbvSPSM8Pw5v8CTkGF2SFGtpmmQHHcX/1TZzvERO 99Nof6EQt AeavhvM/BwfuguZdZkdjCTqhm0wpxZfuO0TTwDjvP6eMlERr/eMmeEa5ZO/NZDqbeOnsHzOUZc1jA FwVtY431jTyoRPeM zOTxolcmla29/45JeBCk58KePQ81tZkcW83RCN9kvXzrJQwc6 eI71lquV0uie5hL936SnNGj7DzrR3Tn7zA7pJizJn2Kh98 xPpsL5 ryeLzNZmMWOlgqT0RNv4VOLvh2MNmRxPzdEI30SMHu/j Y8e4ZmMJf3dRpdnhhExl6x pbriVa166jpzRYzSWv59kVz VrX ksvWPZocXc4pS/Nxz0TBfqHbycHsSVz6Vy64eCw0TULjeGI2x6QVofNrsaGKaTugmefxwN5 7ez9nL8/hhx/YZKm6efbYcTY0/QaHb4qjFR9lOGON2SHFtJqmQV5tGWRbSjvfWduC L186KUc/vaFBJ5rHDY7vNBY/07IKIb7/hYGrDdLVaTohB5hSil u6uJz9y5j01lWdx 07mkJlrjhF2Hd4Jzjvw7a1vvxp2QRd2qj NMLTc7LEtZnTbF96ububpwkKf7svmnupU81WmBSU/sibDlb4w 6r9/Hzj7zI4oJumEHkEDThefv/s1vvXQES5eW8DvPr6VjGQL/HRWfpZ3Pc61L76TtS130ZW7jbqVH8eVmGt2ZJaUZFN8rLyXf1vXQrrDx9 nM3fv5JJ50SM/zunFcAN98BYN/zunTDcanZEMUeUSTNxb9myRdXW1pqy7Uib8vi4Z28bP3rqOOMuL59/exU5aYnYorzMslC9 8TyDyB L2U9z3LGidvIGatnMGMdezd8jeyx4xGMMr55FbzmKuOnR9OwiTFX6SfWTMTuxNNbboKTL8A9HwFHEnzgdj2x9Cwi8qpSas6ZYHRCD5M7a1oZd3mpbRni5RP9jE15OW9VLt 57gzWFGVwZ030tz7mS gJnjEcfher2/5EqquXsdTlHFp9My2lV6PErg98mqDP5eAPHYW8MpRJZoKfm1ZPcsOqSYpTYmw83i03Gde9x Cuv4ahZtj4AbjgC1BUbWpo0UIn9Ajy vzsbOznR08d50jnKF6/YlVBGhevKaSyIC2mDn7OTMw2n5ucsXryRg6T5TyBDT d efTsPx6OgsvRIl9zudpkXVyIolnhkt5uisJG4pLStxcv3KSS4rdOGKhIjOd0AHcE7DzR8ZQuz43FG2E5ecZvWJScyEpE5KzIDnbuF13P8g8OzlzvTFuoYRujaNxJlNKcbB9hEcOdfGX/R30jrlISbCzpSKHbSvzKMqMzQkqxO8l23mCvJHDZI/VY1deXI5MuvO2UbvhazjTlpsdojbLqlQXN2wYocVp556mZP7YkswzXdnkJPq5uNjNpSUu3lbkJisxBkoyialw6ddg66fg8H1w9EE4cDe4x Z5ghjPSc2DjBLjklkKmcsiGraZdAv9FE15fNQ2D/HkkW6erOuhe3QKh024ZF0h7zt7Gb2jLhwxOJZ5gmeU0r6dLOt9nrKeZ3H4XXjsqQxmVjOQtYGx1OVxN 9nLPMp2D STs1QBvtH0xjzOrCh2JTrZUuehy35Hs7O81CYHCWlmYVa0rW3g/LD1KgxhZ13EjxT4JkA9zh4xo3heMf7YKwL3DOG5s1eAaVnQvEmyF0FORWQu9I4S7X29lOLxySn3UIXkSuBnwJ24FdKqe/PelwCj18NTAA3KqX2nVbUUWZkwsPR7lH2NA3y8ol apuH8PoVCXahqjCDL75jLZeuKyQnzehCFgs1cgCHx0nB8GsUDO2jcPBV8ocPYlNeJhNzGcxcz2BmNaPpK99UUtFih11gS7aTLdlO/Aoax5PZN5LOUWcqv2tM5lcNqQDkJ/lYk ljTZaX1RleytL8lKX6KE31kRpNv PFBinZxmUxrjEY7YSRNrA5oHM/HHngzcskpEFCMiSmG5ekmdcZkL0c0vKNHjip eCI7i6ii7bQRcQOHAcuB9qBvcANSqkjM5a5GvgsRkLfBvxUKbVtofWGuoXu9yv8SuFTCqXA51d4fH5cXj9THh8urx Xx8 U14fL48fl9TEVuJ65zOxlO4Ymqe8eo3t0KrCvUF2SSU5qIqsK0liVn05ilBQnRfkQvxeb8mLze7EpD L3kuh1kuQeItEzQrJrgMyJFjLGW8gcbyZtoh0bfvxiZyhzPd15W kovISB7I2savuz2bukhZHHLzRNJHF8PIUpRybHRxw0jNqZ8L3585xh97I8Q1Gc4ic3yU9e4JKbpMhN9JORoEhxKFLtilSH8XeyXeEQEKLkB910S9vlNA60DjXBYJPRRbJtt3G/2xm4HjN CcwlKQvSC42ToDJL3yjtZBQb9fyZXwqJaZCQCjY7iB1sockTp9tC3wo0KqVOBlZ2N3AdcGTGMtcB/6eMb4fdIpItIiVKqZAP6v344W7 8Z7X8KtAAvcr/CGuGiXYhSSHnSSHjcLMZLZX5jHp9lGUmUx5bkpUnQhU2XYfW q h015EYJ7Iby2ZMbSVjCYuY6m0mvpyzmTgezNeB2pYY5WiyYJNsWa9CnWpE8BQ5AHfgWDHgf97oTAxUG/y/i7cdjBqNe4 FTwWVpQ2MQ46UXE NWwKcfDPRebcJZrUjoUn2Fcps0uuShllHTcTlj5NqOEM9EP4/3G384eGO2ClleM0o5/CdMFit1I8Ds B2//emj2aYZgMtMyoG3G7XaMVvhiyywD3pTQReSTwCcDN50iUr kaBeWD/SHcH2vezwcKz09p7mvo0Avxo tqBa29zTKxMt QmBfjwH3RnSzH4/o1lj0Pf1G4HJKVsz3QDAJfa6v4tlNwWCWQSl1GxCWMTJFpHa nyFWEy/7qvfTeuJlX83az2CKOu3AzAE5yoDOU1hG0zRNC6NgEvpeoEpEVopIInA98OCsZR4EPiqG84CRcNTPNU3TtPktWnJRSnlF5DPAExjdFn jlKoTkZsDj98KPIrRw6URo9uiGZ0342m6k3jZV72f1hMv 2rKfpp2YpGmaZoWWtHRgVrTNE07bTqha5qmWYSlErqIfEtEOkTktcDlarNjCicR WcRUSKSb3Ys4SIi3xWRg4H380kRKTU7pnAQkR KyLHAvt4vIkGc2x57ROQDIlInIn4RsVz3RRG5UkTqRaRRRL4c6e1bKqEH/FgpdWbg8qjZwYSLiJRjDMcQG4PGnLofKqU2KaXOBB7mNM7GiHJPAWcopTZhDLXxrybHEy6HgfcCL5odSKgFhkm5BbgKqAZuEJGIDuJuxYQeL34M/AtznMBlJUqp0Rk307Do/iqlnlRKeQM3d2Ocy2E5SqmjSqlQniEeTV4fJkUp5Qamh0mJGCsm9M8Efrb RkRyzA4mHETkXUCHUuqA2bFEgoh8T0TagA9h3Rb6TB8HHjM7CG3J5hsCJWKiZ5SpIInI00DxHA99Ffgf4LsYrbjvAv FCYM4hMIi /kV4IrIRhQ C 2rUuoBpdRXga KyL8CnwG GdEAQ2Sx/Qws81XAC/whkrGFUjD7aVFBDYESTjGX0JVSlwWznIj8EqPmGpPm208R2QisBA4EprMrA/aJyFalVHcEQwyZYN9T4E7gEWI0oS 2nyLyMeBa4O0qhk8QWcL7aTWmD4FiqZKLiJTMuPkejAMwlqKUOqSUKlRKVSilKjA RGfHajJfjIhUzbj5LuCYWbGEU2ASmS8B71JKTZgdj3ZKghkmJaxiroW iP8QkTMxfuY0A58yNxwtBL4vImsBP9AC3GxyPOHycyAJeCrwy2u3Uspy yoi7wF BhQAj4jIa0qpd5gcVkjMN0xKJGPQp/5rmqZZhKVKLpqmafFMJ3RN0zSL0Ald0zTNInRC1zRNswid0DVN0yxCJ3RN0zSL0Ald0zTNIv4/xg3aV9pI2mAAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1 /AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy WH4yJAAAgAElEQVR4nO3dd3gVZfbA8e 5CRAIPaFDaCLSEUKzIIpKUUCRKijorvxcRUVdFWUVsOG61hURsCEdRFBUFBFFUHrvnUBCSwiQQCCkvb8/ZmAvIZ17Mze55/M8eXKnvmfauTPvzH1HjDEopZTyHy6nA1BKKZW/NPErpZSf0cSvlFJ RhO/Ukr5GU38SinlZzTxK6WUn9HED4jIJBF5PY/TjhKRqZ6O6WqISISI3J7DcQeLyJ/ejskpInJWROpkMTzH68qXue HIlJLRIyIBHp4vmH2 gy42vna8xsvIi/bnzuISJQn5pvHWPKcAwqiQpP4C8sB7Mvy60vOk UYY0oaY/bb8/Wrg9vTjDGH7PWZmtV4OT2ZMMY8aox5zROx2V9013hiXv6g0CR pQoST5yNF2SeumooDJzYFwpl4rfPOP4SkfdF5LSI7BeRG z kSISLSKD0k0WKiKLROSMiPwhIjXd5vehPV28iKwTkZuzKPtrETkmInEislREGrkNmyQiH4vIj3Y5q0SkrtvwRnYMJ0XkuIi8ZPd3ichwEdknIrEiMltEyrtN94CIHLSHjchm3YSIyHx7WVYDddMNz3BZRaQz8BLQ177c32T3f0hEdtjLs19E/s9tXqEi8oO9DU6KyDIRcdnDqorINyISIyIHROTJrMpJF NDIvK9W/deEZnt1h0pIs3tz0ZErhGRIcAA4Hl7vt 7zbK5iGy2t9ksEQnKZN0NFpE/ReQdETllx93FbXhVe92etGN6xG3YKBGZIyJTRSQeGCwiS0TkdRFZfjEme/tMs9f/GhGpld22yYqI9BaRden6PSsi32Yyfm17/z8jIouAULdhl1Uh2etjvz3uAREZICINgPFAO3uZTtvjThKRT0RkgYgkALdKBldgIvKSiJwQ6wp gFv/JSLy9/Tbwv681O69yS6zr93/bhHZaO9/y0Wkqdv014vIejv2WUCG29we9xp7ncTZsc1yG5bZMVtMRD4QkSP23wciUswe1kFEokTkBRE5BnwpWRzjIhJk7zex9rKsEZFKmcWbI8aYQvEHRAC3258HAynAQ0AA8DpwCPgYKAbcCZwBStrjT7K729vDPwT dJv3QCAECASeBY4BQfawUcBUt3EfBkrZ8/kA2Og2bBJwEmhtz2saMNMeVgo4as8/yO5uYw8bBqwEqtvznQDMsIc1BM66xf6evey3Z7KeZgKzgWCgMXA4r8tq97sL68tDgFuAc0ALe9gYrCRQxP672R7PBawDXgGKAnWA/UCnzMpJV2Yd4LQ9nyrAQeCw27BTgMvuNsA1buv/9Qz2m9VAVaA8sAN4NJNyBwPJwCNY 9U/gCOA2MP/AMbZ2685EAN0dFumZOAeO 7iwBJgr73 ygDbgd3A7fb6nwx8mdttA9SylzvQ3idOAg3c5rMBuC TZVyBtQ8Vw9qnzmQy32AgHqhvD6sCNHJbT3 mm 8kIA640V7 IPftAXTA2m8vln0LkOA2/yXA39NtC/f99tJ2trtbANFAG3tbDbK3dTGsfe4g8DTWftnL3javZ7JOZgAj3OK KQfH7KtYx2xFoAKwHHgt3bL 246nOFkf4/8HfA UsJelJVD6qvKl0wnbU39cmfj3uA1rYu8Yldz6xQLN3XbKmW7DSgKpQI1MyjoFNEt/wGUwXlm73DJu5XzmNrwrsNP 3B/YkMl8dmAnELeDLBnrAHwlXezBQBIZJH57p0kGrnPr9ybpDtK8LKvb N8CT7nt/N/hdkDa/dsAh9L1exE7yeWwnEisg7sfMBEreV H9WU/3228nCT gW7dbwPjMylzMLDXrbuEPf/KQA17nynlNnwMMMltmZamm98SYIRb97vAT27d3XA7ccjptsEtQdvdnwBv2J8b2dMVy2B YVgJKdit3/SM5mvvZ6eB 4DiGaynjBL/5Az6pU/87mXPBl52W1e5SfyfYCdat367sL5Q2uP2hW0PW55 33AbNtnex6qn65/VMbsP6OrW3QmIcFvWJOwv7Rwc4w/b8TXN6pjIzV hrOqxHXf7fB7AGJO X0m37siLH4wxZ7HOkqrCpUvjHfal3mmss7NQ0hGRABF5y75ci8dKKqQb95jb53NuMdTA2lkyUhOYZ1/mncbaSVKBSnaM7rEnYH2pZaQC1o4U6dbvYLplyNGyuo3fRURW2pe6p7G zC6O/x sM9pf7CqB4W7LU/Xi8tjTvWQvT079gXUAtbc/L8E6qG xu3Mjs22S5bjGmHP2x5JY2 GkMeaM27gHgWpu3e7r/aL0 2Sm 2hut42br4D7RUSAB4DZxpgLGYxXFThl70Puy3AFe5y wKPAUbGqL6/LJo6Mlt9dRmVXzWaazNQEnk23j9Ww51cV6wrRpCsrM89jXamuFpFtIvKw3T rY7ZqunmmX5YYY0xiungzO8anAAuBmXa10dsiUiSLeLNVmBN/btW4 EFESmJd9h x61FfAPoA5YwxZbEuWSWDedwP9MC6VC DdYZEJuOmF0m6 vZ0w7oYY8q6/QUZYw5jXWq6x14CqzogIzFYZ1U13PqFuU2b3bK6HyjYdZbfAO9gXU2VBRZcHN8Yc8YY86wxpg7W2eszItLRXp4D6ZanlDGma0blZOJi4r/Z/vwH2Sf nMw3r44A5UWklFu/MKyqtKsuP5f74WWMMSuxzjBvxtpHp2Qy6lGgnIgEu/ULy2RcjDELjTF3YJ2d7gQ vTgos0myCTWjso/YnxOwrrAuqpzNvCKxrnLc97ESxpgZWMtZzf4idC8r46CNOWaMecQYUxWr2mWcWE8QZXXMHsFK5hktC1y5LjI9xo0xycaY0caYhsANwN3Ag9ksf5Y08f9PVxG5SUSKAq8Bq4wxkVj1dilYSTNQRF4BSmcyj1LABawz7hJY1Sg59QNQWUSG2TeGSolIG3vYeOANsW84i0gFEelhD5sD3O0W 6tksl2N9RjeXGCUiJQQkYZYdZ/u8We1rMeBWmLfoMWqKy1mj58i1o3OOy ObN9cu8Y wOKxzmBSsapl4u2bW8XtK6XGItIqk3Iy8gdwK1Y1QxSwDOiM9aW3IZNpjmPdA/A4e19ZDoyxb8Y1Bf6GdR/HE3KzH2ZkMjAWSDHGZPiopTHmILAWGC0iRUXkJqwv7CuISCUR6W4n6gtY95kuPuZ5HKhu74 5dbHsm7ES3Nd2/41AT3u/vQZr3bpLv20/BR4VkTZiCRaRu wv5hVY6/JJEQkUkZ5Y990yJNYN8up25ymspJ1K1sfsDOBf9rEailUlm9Ujypke4yJyq4g0EetJqHisKqAsH6nNjib /5kOjMSq4mmJ9QQIWJdYP2HddDsIJJL5Jetke5zDWDfqVua0cLuK4A6sA 0YsAcrsYF1s3k VpXJGXu bezptgGP2/Efxdoxs/ohzFCs6oNjWHWsX7oNy25ZLx6EsSKy3o75Say62FNYZ5Pz3cavB/yKlRRWAOOMMUvsL6BuWDdADwAngM wrpKuKCejhTDG7Lbnu8zujse6QfyXyfw588 BhvbldIZPtVyl/lhXeUeAecBIY8wiD807N/thRqZg3czP7Gz/ovux9q2TWMfD5EzGc2Hd1Dxij3sL8Jg97DdgG3BMRE7kIsZjWPvREawvzEeNMTvtYe9jXbUcx6q6Sv FOgr4yt62fYwxa7Fuwo 157kX674AxpgkoKfdfQqrympuFnG1AlaJyFms/fspY8yBbI7Z17G RDcDW4D1dr/MZHqMY13dzMFK juwTnqu6ncuF59GUEoVYiJSHOsplxbGmD1Ox6OcpWf8SvmHfwBrNOkrsJ7wUEoVYiISgXUT B6HQ1E Qqt6lFLKz2hVj1JK ZkCUdUTGhpqatWq5XQYSilVoKxbt 6EMaZC v4FIvHXqlWLtWvXOh2GUkoVKCKS4S StapHKaX8jCZ pZTyM5r4lVLKzxSIOv6MJCcnExUVRWJiYvYjq0uCgoKoXr06RYpcVeN SqkCrMAm/qioKEqVKkWtWrW4vJE9lRljDLGxsURFRVG7dm2nw1FKOcRrVT0i8oVYrzjcmsGwf4r1CrectCWeocTEREJCQjTp54KIEBISoldJSvk5b9bxT8JqJvcyIlIDq0W7Q1dbgCb93NN1ppTyWuI3xizFaq41vfex3mijbUUopVQmTiUkMebb1cQnJnt83vn6VI IdMd65dmmHIw7RETWisjamJiYfIguf3Xt2pXTp09nOU7Jkhm/AXDw4MHMmTPHG2EppRxmjOHHTYeZ8O6LDN3QnV2rPfVKh//Jt5u79isBR D2hqasGGMmYr3gmPDw8EJzdXDxZccLFixwOhSllI85Hp/I2Nk/0e3QGIa7dnG2xs20atLI4 Xk5xl/XaA2sMluJrY6sF5Esnt3pk964YUXGDdu3KXuUaNGMXr0aDp27EiLFi1o0qQJ3333HQARERE0aNCAxx57jBYtWhAZGUmtWrU4ccJ6OdE999xDy5YtadSoERMnTrysnGeffZYWLVrQsWNHMrryWbduHbfccgstW7akU6dOHD161ItLrZTyBmMMs1ftY8Z7w/hX5CM0LXqU1O7jKPm376FczexnkJcCvfWH9Rq6rZkMiwBCczKfli1bmvS2b99 Rb/8tH79etO fftL3Q0aNDAHDx40cXFxxhhjYmJiTN26dU1aWpo5cOCAERGzYsWKS PXrFnTxMTEGGOMiY2NNcYYc 7cOdOoUSNz4sQJY4wxgJk6daoxxpjRo0ebxx9/3BhjzKBBg8zXX39tkpKSTLt27Ux0dLQxxpiZM2eahx56KNvYnV53Sqn/OXgiwbz08WSz9eUmxowsbc5Ovt Y GMemTew1mSQU71W1SMiM4AOQKiIRGG9f/Rzb5WX366//nqio6M5cuQIMTExlCtXjipVqvD000 zdOlSXC4Xhw8f5vjx4wDUrFmTtm3bZjiv//73v8ybNw AyMhI9uzZQ0hICC6Xi759 wIwcOBAevbsedl0u3btYuvWrdxxxx0ApKamUqVKFW8tslLKg1LTDFOW7SR58RhGy/ckFy9PWo8pBDfs7vWyvZb4jTH9sxley1tl55devXoxZ84cjh07Rr9 /Zg2bRoxMTGsW7eOIkWKUKtWrUvPzAcHB2c4jyVLlvDrr7 yYsUKSpQoQYcOHTJ9zj79o5jGGBo1asSKFSs8u2BKKa/ac/wMk2ZM428n36eO6xgJje4n O43oXi5fClf2 q5Cv369WPmzJnMmTOHXr16ERcXR8WKFSlSpAi///47Bw9m2CLqZeLi4ihXrhwlSpRg586drFy58tKwtLS0S0/vTJ8 nZtuuumyaevXr09MTMylxJ cnMy2bds8uIRKKU9KSklj/MINrBk7mDdOv0ClkoGYB74luPcn Zb0oQA32eALGjVqxJkzZ6hWrRpVqlRhwIABdOvWjfDwcJo3b851112X7Tw6d 7M PHjadq0KfXr17 sOig4OJht27bRsmVLypQpw6xZsy6btmjRosyZM4cnn3ySuLg4UlJSGDZsGI0aef4pAKXU1dkUeZpvZn7Go2c/pnLAac63fJTgTq9A0YxrA7ypQLxzNzw83KR/EcuOHTto0KCBQxEVbLrulMo/55NSmfDTKuqsfY3uAcs5W7oeJfuMh rhXi9bRNYZY64oSM/4lVLKS1buO8Gvs8fyWOKnlA5MJPHG5ynZ4TkILOpoXJr4lVLKw ITk/nkuz9otfU1/hWwkTMVmhPYZzyBFX3jSlsTv1JKedBvO46yds57PJYyhWJFDEm3vUGpG/4BrgCnQ7tEE79SSnlA7NkLfDJ3IXfsfYPnXTs5U 0mivb GMrVcjq0K2jiV0qpq2CM4YeNhzgw/988lzYbUySIlC5jKdVyIPhoM ia JVSKo OxSUyYdZc7ov6N91cEZyp04VSPT AUr7dBJkmfqWUyiVjDLNX7iX 59cZwXySgsqR2uMrSjW6x nQckR/uXsVLraXHxERQePGjXM8XUREBNOnT/dWWEopLzoYm8DosZ8T/lM3HpFvSWzYmxLD1hJQQJI aOL3qpSUlAz7Z5X4M5tGKeWs1DTDpN828 eHgxkV yyVgl2YgXMp2XcilCjvdHi5UiiqekZ/v43tR I9Os GVUszslvumz6YNGkSP/74I4mJiSQkJPDbb79dMc7w4cPZsWMHzZs3Z9CgQZQrV 6yaV555RXeeecdfvjhBwCGDh1KeHg4gwcPZt26dTzzzDOcPXuW0NBQJk2apC1yKuVlu46dYdb0z/hb3EdUcZ0k4fohlOw8Eopl/JY8X1coEr vWbFiBZs3b6Z8 YzPAt56663LEvukSZMum2bJkiUZTpecnMwTTzzBd999R4UKFZg1axYjRozgiy 8NaiKOXXklLS PyXtVRZOZpXXH9ypnRdpPcMgsPaOB3aVSkUiT8vZ bedMcdd2Sa9K9mGm1/X6n8s/HQKRbMGMuQcxMp50rgfLt/Uqrj8xBYzOnQrlqhSPy JrO293M6TWBgIGlpaZe6L7bPr 3vK V955NSmfjDMhptGM1LAeuJD2lCQN8JFK/kWyeYV8NrN3dF5AsRiRaRrW79XhORzSKyUUR EZGq3irfl5UqVYozZ85kOrxmzZps376dCxcuEBcXx LFiwFtf18pb1u N5qx74zgoU39aB 4jcTbXqX00D gECV98O5TPZOAzun6/ccY09QY0xz4AXjFi X7rKZNmxIYGEizZs14//33rxheo0YN vTpQ9OmTRkwYADXX3898L/291944QWaNWtG8 bNWb58eX6Hr1ShE5 YzDszFiBf9eC5pE8wVZpT9ImVBLV/yqfa2PEUr7bHLyK1gB MMVc85C4iLwJhxph/ZDcfbY/fs3TdKfU/i7ceZvu8MTySMhMCi Hq9AZFWw3y2eYWcsNn2uMXkTeAB4E44NYsxhsCDAEICwvLn CUUn4j9uwFPv16Pl0PvMETrgPE1epEmfs hNKF/4GJfE/8xpgRwAj7jH8oMDKT8SYCE8E648 /CD1ny5YtPPDAA5f1K1asGKtWrXIoIqWUMYYf1kdw7PvXeNZ8S3KxMiR3n0SZxvcUirP8nHDyqZ7pwI9kkvgLgyZNmrBx40anw1BK2Y7GnefLGTPpc RturmOEH9db0r3eLvA/fL2auVr4heResaYPXZnd2BnfpavlPJPaWmG2ct3krpoFMNZyLkSlUnt Q2lr73d6dAc4bXELyIzgA5AqIhEYZ3ZdxWR kAacBB41FvlK6UUwIETCcyY9gUPnvyAqhJLQrOHKdX11QLb3IIneC3xG2P6Z9D7c2 Vp5RS7lJS05j6 wbKLB3FS66lxJesjfSdRqmwtk6H5jj95a5SqtDZfjiO TPG8bcz4yjvSuBsm2GUvuOlQtHcgidos8xXIa/t8XvapEmTGDp0qGPlK UrLqSkMv6HPzk8oSfDz75FkXI1cD36ByW7jNak70bP L0oJSWFwMC8r LU1FQCAgrfrwaV8oZ1ESdZMvNdHjn/BcUDUjjXfhRl2z8BAZrm0isca Sn4XBsi2fnWbkJdHkr15PlpD3 JUuW8MorrxASEsKuXbto374948aNw VyUbJkSZ555hkWLlzIu S0REBP/9739JSkqiTZs2jBs3joCAAL788kvGjBlDlSpVuPbaaylWzDqb frrrxk9ejQBAQGUKVOGpUuXXvWqUMqXnUtK4bPvFhO ZRTPurZzqlIbivT9hCIhdZ0OzWdpVY8XrFixgq irDpH/R6tWreffdd9myZQv79u1j7ty5ACQkJNC4cWNWrVpFSEgIs2bN4q //mLjxo0EBAQwbdo0jh49ysiRI/nrr79YtGgR27dvvzTfV199lYULF7Jp0ybmz5/v9WVVykl/7jrGF28/yyNbB9Ii8CCJXd6n3KM/gyb9LBWOM/48nJl7U07a1m/dujV16tQBoH///vz555/06tWLgIAA7rvvPgAWL17MunXraNWqFQDnz5 nYsWKrFq1ig4dOlChQgUA vbty 7duwG48cYbGTx4MH369KFnz57eWkSlHBV3LpnP535Px92vMdS1n1Nht1Ou90dQ2i8b/M21wpH4fUxO2uOXdD8Nv9gdFBR0qV7fGMOgQYMYM2bMZeN 23V0x/0fjx41m1ahU//vgjzZs3Z PGjYSEhORlMZTySQs3HSLyu9E8kTqPpKKlSer2OeWa3uc3zS14glb1OGT16tUcOHCAtLQ0Zs2axU033XTFOB07dmTOnDlER0cDcPLkSQ4ePEibNm1YsmQJsbGxJCcn8/XXX1 aZt fbRp04ZXX32V0NBQIiMj822ZlPKmmDMXeOezKdT5pjN/T5vD2Xo9CH5mPUWb9dKkn0t6xu Qdu3aMXz4cLZs2UL79u259957rxinYcOGvP7669x5552kpaVRpEgRPv74Y9q2bcuoUaNo164dVapUoUWLFqSmpgLw3HPPsWfPHowxdOzYkWbNmuX3oinlUcYYvlu9m4SfRvKM ZmE4pVI6fk15erf6XRoBZZX2 P3lMLWHv SJUsue9l6fivI6075l6hT55g fRL3R79LVYklvslgyt79GhQr5XRoBYLPtMevlFLZSUszzF62maDfXuZ5 YO44FrQZypla7VzOrRCQRO/F2XVHn HDh2cCUopH7cv gzfTh/Hg6fGUk4SiG/1FGXufAmKBDkdWqFRoBO/MSbTp1t8gS 2x18QqvaUf0pOTWPar6uo9tfLPOtaw6myDQnoN57SVfQ lacV2MQfFBREbGwsISEhPp38fYkxhtjYWIKC9MxJ ZatUadZPONdHjr7GUEBKZy9 RXK3fKUNrfgJQV2rVavXp2oqChiYmKcDqVACQoKonr16k6HoRQAicmpfPXjEpqsf5mnXNs4WaEVRftPoKj 8tarCmziL1KkCLVr13Y6DKVUHq3dH8PqWW/yUOJUCCzC dvfoXzbv4FLf17kbV5bwyLyhYhEi8hWt37/EZGdIrJZROaJSFlvla U8k1nL6Tw8cz5BE7qxGMXvuBctRsp/tQait/wiCb9fOLNtTwJ6Jyu3yKgsTGmKbAbeNGL5SulfMzSHVHMfvsfPLJjMPWKxpLY41NCHpkHZao5HZpf8earF5eKSK10/X5x61wJ9PJW Uop33H6XBJfzZ5Dl/2v0951mNi69xBy33sQrO1IOcHJOv6HgVmZDRSRIcAQgLCwsPyKSSnlYb9s2MeJ a/wRNqPnA2qSNK9swhpkL4yQOUnRxK/iIwAUoBpmY1jjJkITASryYZ8Ck0p5SHR8YlMnzGZ w6/TQ1XDLGNBhHS4w1tbsEH5HviF5FBwN1AR6O/JlKq0DHG8N2KbZhfRjCMJZwKrkVKn68IqX2j06EpW74mfhHpDLwA3GKMOZefZSulvC/y5DnmThtH/xMfESLxnGr5BOU6/0ubW/AxXkv8IjID6ACEikgUMBLrKZ5iwCL717YrjTGPeisGpVT SEszfL1kDeX GMFTsprY0tch/edTrqo2t CLvPlUT/8Men/urfKUUs7Yezyen6e9xwNxEyjuSiHuhhGE3PaMNrfgw3TLKKXyJDk1jRkLl1F35QiGurYQExpO6f7jKRpaz nQVDY08Sulcm1r5En mv4mD5ybjAQGcOa2t6mgv7wtMDTxK6VyLDE5lanzF9Jy08v8n2sv0VU7ULHfOP3lbQGjiV8plSNr9h5j2 xRPHhhNklFSnKuywQqtuyrLzovgDTxK6WydCYxmenfzOWWXa8x2BVJTO3uVOj9PgSHOh2ayiNN/EqpTP2xLYKjc//FIyk/cKZYBRLvnUGFhl2dDktdJU38SqkrnEpIYuasKdwVMYZbXDHENBhIhXvGQFBpp0NTHqCJXyl1iTGGX9bt5PyPL/EP8xunSoSR1PsHKtS92enQlAdp4ldKAXA8PpFvpn1Cr2MfECLxnGj OKF3vQxFijsdmvIwTfxK TljDPP/3EDxxcN5jFWcKFUf0 9bQqtf73Royks08Svlxw6dSGDB1Hfpd2o8JSSJU21fJPSOZyGgiNOhKS/SxK UH0pNM3z965/U OtFHpUtRJdvQen EyhX8VqnQ1P5QBO/Un5m99HTLJ36Bvef/QqXy0XcrWOoeNOj2tyCH9HEr5SfSEpJY9aCRTReO4K/u/ZwvPLNVOw/jqCy mpTf6OJXyk/sDkimo0zR9Lv/CySigRzptPHVGo1QJtb8FNeu7YTkS9EJFpEtrr16y0i20QkTUTCvVW2UspyPimVL2fPodgXt/Fg4nROhnWi5NPrKdV6oCZ9P bNM/5JwFhgslu/rUBPYIIXy1VKAat2RRHx9Ys8mPw9Z4uGcK7HFCo36e50WMoHePMNXEtFpFa6fjsARM80lPKa MRkZs2exp1736CNK5pj1/an8n3/hqAyToemfITP1vGLyBBgCEBYmN58Uion/ti0h9PfDeeRtF85Wbw6F3rNp3K9W5wOS/kYn038xpiJwESA8PBw43A4Svm02LMXmDt9At0Pv0uoxHO8yaNU6j5Km1tQGfLZxK Uyp4xhoWrNuNa AKPmBXEBNcjrd9cKoW1dDo05cM08StVQB09fY4fp75Pr5iPCZYLxLR6ngqdn9fmFlS2vJb4RWQG0AEIFZEoYCRwEvgIqAD8KCIbjTGdvBWDUoVRWpph/tJVhP7 PH XTRwv24xSAz6lQsX6ToemCghvPtXTP5NB87xVplKFXUTMGX6f8gZ94r7A5XJx8ubXqdThcW1uQeWKVvUoVQCkphnmLlxM3ZUv8pDs5kjFG6ly/ycUL1fT6dBUAaSJXykft vwSdZMe4XeCTNIDijO6TvGUrWt/vJW5Z0mfqV81IWUVL6Z/z3Xb3qZgXKIw9W7ULX/f5GSFZ0OTRVwmviV8kEb9x9h98yX6HvhW84UCeFMtylUa6bNLSjP0MSvlA85l5TCN3Nmctr1y8wAABjUSURBVPPOV njOs7ha/pSrfd/tLkF5VGa JXyEau2H D43Od5IOUXYoOqce6 eVSrf5vTYalCSBO/Ug6LO5/MtzM/pVPE24RLHEcaDaFqj9FQtITToalCShO/Ug5asn47yT/8k0FpfxFdoi4p/eZQtaa qkJ5lyZ pRxw4kwiP077gO5HPyJYEjnW8lkqdxkOgUWdDk35gWwTv4hUAt4EqhpjuohIQ6CdMeZzr0enVCFjjGHh8jWUXPQcg9jI0dJNKTlgIpUrN3A6NOVHcnLGPwn4Ehhhd 8GZgGa JXKhSOnElg85U3ujf2MABdE3/gqVW4bCq4Ap0NTfiYniT/UGDNbRF4EMMakiEiql NSqtBISzN8/9sfVF/2Ag/ITqJC2lFl4Hgqlq/ldGjKT Uk8SeISAhgAESkLRDn1aiUKiQOHD/Nyqkj6Rk/lWRXcWJv/5DqNwzS5haUo3KS J8B5gN1ReQvrCaVe3k1KqUKuJTUNL796UcarRlBfzlIZNVOVL//I0qWquR0aEpln/iNMetF5BagPiDALmNMstcjU6qA2nHoONumv8g95 eREFiW012/pEbLnk6HpdQlOXmq58F0vVqICMaYyV6KSakC6UJKKt/Om03rraPoJceIrN2L6n3eQUqUczo0pS6Tk6qeVm6fg4COwHogy8QvIl8AdwPRxpjGdr/yWE8E1QIigD7GmFO5jlopH7Nhz0GiZj9P3 SfOVG0Kmfu/YYaDW93OiylMpSTqp4n3LtFpAwwJQfzngSM5fIviOHAYmPMWyIy3O5 IcfRKuVjEi6kMH/253TY xZN5TSR9R mxn2vQ9Fgp0NTKlN5 eXuOaBediMZY5aKSK10vXtgvYcX4CtgCZr4VQG1cstOznz7T/qnLuN48dpc6DODGnXaOh2WUtnKSR3/99iPcgIuoCEwO4/lVTLGHAUwxhwVkUzfKCEiQ4AhAGFhYXksTinPi0tIYsGMD kU QGlJJHDzYdR7e4R2tyCKjBycsb/jtvnFOCgMSbKS/FcYoyZCEwECA8PN9mMrlS WLJ6A4E/PUN/s54jpRoRfP9EqlVt7HRYSuVKTur4//BgecdFpIp9tl8FiPbgvJXymuj4c/w25S3ujp5AoBiOtn2FqncO0 YWVIGUaeIXkTP8r4rnskGAMcaUzkN584FBwFv2/ /yMA l8o0xhl W/kno78/Rjx1ElmtD5YETqBJa2 nQlMqzTBO/MabU1cxYRGZg3cgNFZEoYCRWwp8tIn8DDgG9r6YMpbwp6kQcy6eMpsfpySS7inG8w3vUaP wNregCrwcP9Vj34gNuthtjDmU1fjGmP6ZDOqY0zKVckJammHBop pu3w4fSSCiEq3EzbwY0qWrux0aEp5RE6e6ukOvAtUxaqTrwnsABp5NzSl8t/ ozFsmvoS3c7O4WxAWU50 YxarfTCVBUuOTnjfw1oC/xqjLleRG4FMjubV6pASk5N4/v539B848vcK0c5ENaTWv3f0 YWVKGUk8SfbIyJFRGXiLiMMb LyL 9HplS WT7gSgOzHyOnhcWcKJIFU7dM5vajTs5HZZSXpOTxH9aREoCy4BpIhKN9Ty/UgVaYnIqP8yZxI07X c6OUVEvUHU6j1Gm1tQhV5OEv9SoCzwFDAQKAO86s2glPK2jTv3EjPnGXql/MGxoNqc6z2dWte0czospfJFThK/AAuBk8BMYJYxJtarUSnlJWcTk/lpxlhui3iXRnKeg02epGaPl7W5BeVXcvLL3dHAaBFpCvQF/hCRKGOMtjmrCpQVGzeTOv9peqetJSq4IcXvn0jN6k2cDkupfJeb1jmjgWNALJBp42pK ZrTCYksmvo2nY MI1DSiGz9L2p0fkabW1B KyfP8f8D60y/AjAHeMQYs93bgSnlCUuWr6DUL8/Qm 0cLNuKygMmUKNiXafDUspROTnjrwkMM8Zs9HYwSnlK9Omz/Dl5NF1jvyTFVZTDN/ Hmrc os0tKEXO6viH50cgSnmCMYZFv/1K9WXP0ZMD7K9wK2EDx1GybFWnQ1PKZ TlDVxK aTI6JOsn/ISd8XP4mxAGY7fOZE6bfs6HZZSPkcTvyrwUtMMPy YR4M1I ghR9hbvQd17v8AV3B5p0NTyidp4lcF2t7Io ye/k/uOv8DMYGVOdF9Jtc06 J0WEr5NE38qkBKTk3jp7mTCd/6Kp3lJHvrDKRu37eQYlf1Ggml/IImflXgbN97gKOzhtE9eQlHi9Ukvtdkrrn2JqfDUqrAcCTxi8hTwCNYzUF8aoz5wIk4VMGSmJTCz7PHcdOe/3CtJLCvwWPUvW8UBBZzOjSlCpR8T/wi0hgr6bcGkoCfReRHY8ye/I5FFRzrtm4jcd4w7kldTWSJ6yjWbwJ1azZ3OiylCiQnzvgbACuNMecAROQP4F7gbQdiUT7uzPkLLJ72H26LHEtRSeVAixepfdc/IUBrKZXKKyeOnq3AGyISApwHugJr048kIkOAIQBhYWH5GqDyDSvXrKHIgmHcY7ZyoHRLKg cQO1K9ZwOS6kCL98TvzFmh/0Gr0XAWWATGbzYxRgzEZgIEB4ebvI1SOWok2fOsWzyaDpFf06qFOHgjW9R /ZHtbkFpTzEketlY8znwOcAIvImEOVEHMq3GGNYuux3Kvz2LD3Yz96Q9tQYOI6a5Ws4HZpShYpTT/VUNMZEi0gY0BPQVx/5ueMn41g9 SU6n5pBgqsUUR3Hcc2N9 tZvlJe4NQdsm/sOv5k4HFjzCmH4lAOM8aweOF86qx8kW4cZneVu6kz4EPKlgp1OjSlCi2nqnpudqJc5VsOHY1m 9R/cufZ cQGVuB412lc2/Jup8NSqtDTZ JUvktNM/wyfxpNN4zkTmLZU6sf9fq9jat4aadDU8ovaOJX WpPxCEiZwyjy4XFHCkaxsl7v6B w1ucDkspv6KJX WLpORUFn0zgTY7xlBLEth17f9xbe/RSJHiToemlN/RxK 8btvOXcTNeYK7UlZxqPi1BPYZT/06LZ0OSym/pYlfec35Cyn8NuMdbj7wIXUlhT1Nn6dejxe0uQWlHKZHoPKK9RvXY Y/yV1pW9hfsjkVBk6kXpX6ToellEITv/Kw HOJLJvyKrcd ZRUCWRfm9ep2 lxcLmcDk0pZdPErzxm5YqllPrlae4ye9ld7iZqPDCeuiHa3IJSvkYTv7pqsafjWT3lX9x YioJrpIcvHUs17YfqM0tKOWjNPGrPDPGsOz3BVRf jxdiGJHxa7UfeAjypbW5haU8mWa FWeHIs5wZbJz9Exfh6xAaFEdZ5Mg9Y9nA5LKZUDmvhVrqSlGX7/aRb1V/ LOySGbTX6ct2AdwjQ5haUKjA08ascOxQVxf5pw h4fhFHilTneI9vadTkVqfDUkrlkiZ la2U1DR n/cZzbe8zk1yhm11H6Fhv9e0uQWlCihN/CpLe/bt4cSsJ7gjaQUHi9XD1Wcuja4JdzospdRVcOoNXE8DfwcMsAV4yBiT6EQsKmMXklNYMusD2u55jxqSzI7Gz3LdvS8iAUWcDk0pdZXyPfGLSDXgSaChMea8iMwG gGT8jsWlbGtWzeRNO8JOqVuYm9wMyrcP4EG1Rs4HZZSykOcquoJBIqLSDJQAjjiUBzKzbnEC/w59XVuipyAERe7wl lftcntLkFpQqZfE/8xpjDIvIOcAg4D/xijPkl/XgiMgQYAhAWFpa/QfqhDWv/ouiCYdyZtpudZW6g sDx1K9Y0 mwlFJekO nciJSDugB1AaqAsEiMjD9eMaYicaYcGNMeIUKFfI7TL8RdzaBRR8Po9H33aiWdow9N3/IdU8voKQmfaUKLSeqem4HDhhjYgBEZC5wAzDVgVj82qqlCwn97VnuIJKtoZ245sGx1CtT0emwlFJe5kTiPwS0FZESWFU9HYG1DsTht2JOnmTz5Oe49dQ3xLpCOHDnlzRu19PpsJRS cSJOv5VIjIHWA kABuAifkdhz8yxvDnL3OoveIlOhLN5qq9afDAO1QoUdbp0JRS ciRp3qMMSOBkU6U7a OHDvK3inDaJ/wM4cDqhHV7RuaNr/d6bCUUg7QX 4WcmlphqXzP6fRhte4gXg21X6Yxve/SUBRbW5BKX lib8QOxixn6MznqDDhT JKHoNqffNptl1bZwOSynlME38hVBKSipLv/6QljvfobIksfm6YTTpNQIJLOp0aEopH6CJv5DZvXMLCd8M5bbkjewp3oTy/cbTtFZjp8NSSvkQTfyFROKFJP6a8SbtDowjTVxsaT6Sxt2fQlwBToemlPIxmvgLgW0bVyLzn6Bj2m62l2pL1QHjaVKlttNhKaV8lCb Aizh3DlWT3mZG498yTkpwY4b3qPhHQ DiNOhKaV8mCb AmrD8l8pvehpbjWH2Fz Duo8OJYG5So7HZZSqgDQxF/AnD59ik1TnuemE19z0lWe3R0/o nNvZ0OSylVgGjiL0BWLZ5HtWUvcAvH2VCpJw0eeI8Kpco5HZZSqoDRxF8AxMQcZ/eUYdwYv4DDrqrs7zqb68M7OR2WUqqA0sTvw4wxLP/xK qtHUUbE8e6sEE0HTCGIkHBToemlCrANPH7qMORERyePpQbzy/jQGAdLtwznZaNb3A6LKVUIaCJ38ekpabx19yPaLr13zQjifXXPknzPi/jKqLNLSilPEMTvw J2Lud07Mf5 ak9ewOakTpPp/Qom4zp8NSShUymvh9QHJyMitnvkWLvR9RQYQNTf5F83uf0eYWlFJeke JX0TqA7PcetUBXjHGfJDfsfiCPVvXkDxvKDen7mRbcGsqDRjH9dXqOR2WUqoQc LVi7uA5gAiEgAcBubldxxOS0w8z5qpr9A68gvOSxCbWr1Ns65DtLkFpZTXOV3V0xHYZ4w56HAc Wr72t8ptuApbk47yMayHakzcCzNKlR1OiyllJ9wOvH3A2ZkNEBEhgBDAMLCwvIzJq85ezaejZOfp93xmZyUcmy/ZQLNb 3ndFhKKT8jxhhnChYpChwBGhljjmc1bnh4uFm7dm3 BOYlG5fOJ/T356hujrE29B4aPPA wWXKOx2WUqoQE5F1xpjw9P2dPOPvAqzPLukXdKdjY9gxZRjtTv/AYanMrs4zCG/b1emwlFJ zMnE359MqnkKA2MM636ZTtiKf9HanGJNtYE0feAtqhUv5XRoSik/50jiF5ESwB3A/zlRvrfFHD3EwalPEJ6whAMBtTnbfTKtmt3sdFhKKQU4lPiNMeeAECfK9iaTlsbq Z9Qf ObNDWJrK7zGC36jyKwaDGnQ1NKqUucfqqn0DgSsYuYmY/RJnEtO4s0JLjXOFrXv97psJRS6gqa K9Samoqa2a/TZOd71MWWN3wRcJ7PYcrQJtbUEr5Jk38V Hgrg2cm/MYbZO3s6V4OBXv/4TWYdc6HZZSSmVJE38eJCddYO20kbSM JRzEsS668fQotujiMvldGhKKZUtTfy5tGfjMlzzn6Bd2gHWl76VmgM/omWlGk6HpZRSOaaJP4cSz51lw5QXaH1kGielLBtv/JgWdwx0OiyllMo1Tfw5sH35j5Re9CztzFFWh3Sj/gMf0LxcqNNhKaVUnmjiz8KZ07HsmPI0rWO/47BUYuvtU2h9U3enw1JKqauiiT8TmxfPoPKyl2hpTrGicn aPfg21YJLOx2WUkpdNU386ZyKOcL KUNpGb Y/a6anLrrS9q17OB0WEop5TGa G0mLY0NCz6lztrXaGLOsbzm/xE 4FWKFgtyOjSllPIoTfxAdNQ jk37By3Or2Jn4HUU7fkxNzS8oglrpZQqFPw68Zu0VNZ 8y4Nt77LNRiWX/scbfoOJyDQr1eLUqqQ89sMd3jvJuJnP0arpK1sDmpB b6fcEOd65wOSymlvM7vEn9qchLrZr5Ks73jKUlRVjR9nTb3PI4rQJtbUEr5B79K/BFbV5D27WO0TtnP2uD21Bg4lnZVazodllJK5Sun3sBVFvgMaAwY4GFjzApvlZd0PoFN017k sgpnJLSrG7zX1p1fhAR8VaRSinls5w64/8Q NkY00tEigIlvFXQnjW/EPTTMFqlHWZF2a5c9 CHtA6p6K3ilFLK5 V74heR0kB7YDCAMSYJSPJGWas/f5bWkZ9xmEqs7zCJdh3u9UYxSilVoDhxR7MOEAN8KSIbROQzEQlOP5KIDBGRtSKyNiYmJm8lVWnCsgp9KfXMalpo0ldKKQDEGJO/BYqEAyuBG40xq0TkQyDeGPNyZtOEh4ebtWvX5luMSilVGIjIOmPMFb9GdeKMPwqIMsassrvnAC0ciEMppfxSvid Y8wxIFJE6tu9OgLb8zsOpZTyV0491fMEMM1 omc/8JBDcSillN9xJPEbYzYC2gqaUko5QNspUEopP6OJXyml/IwmfqWU8jOa JVSys/k w 48kJEYoCDeZw8FDjhwXA8RePKHY0rdzSu3PHVuODqYqtpjKmQvmeBSPxXQ0TWZvTLNadpXLmjceWOxpU7vhoXeCc2repRSik/o4lfKaX8jD8k/olOB5AJjSt3NK7c0bhyx1fjAi/EVujr JVSSl3OH874lVJKudHEr5RSfqZQJH4R6S0i20QkzX7RS2bjdRaRXSKyV0SGu/UvLyKLRGSP/b ch LKdr4iUl9ENrr9xYvIMHvYKBE57Dasa37FZY8XISJb7LLX5nZ6b8QlIjVE5HcR2WFv86fchnl0fWW2v7gNFxH5rz18s4i0yOm0Xo5rgB3PZhFZLiLN3IZluE3zKa4OIhLntn1eyem0Xo7rObeYtopIqoiUt4d5ZX2JyBciEi0iWzMZ7t19yxhT4P ABkB9YAkQnsk4AcA rFc/FgU2AQ3tYW8Dw 3Pw4F/eyiuXM3XjvEY1o8uAEYB//TC spRXEAEEHq1y XJuIAqQAv7cylgt9t29Nj6ymp/cRunK/ATIEBbYFVOp/VyXDcA5ezPXS7GldU2zae4OgA/5GVab8aVbvxuwG/5sL7aY72Aamsmw726bxWKM35jzA5jzK5sRmsN7DXG7DfWC95nAj3sYT2Ar zPXwH3eCi03M63I7DPGJPXXynn1NUur2Pryxhz1Biz3v58BtgBVPNQ e6y2l/c451sLCuBsiJSJYfTei0uY8xyY8wpu3MlUN1DZV9VXF6a1tPz7g/M8FDZmTLGLAVOZjGKV/etQpH4c6gaEOnWHcX/EkYlY8xRsBILUNFDZeZ2vv24cqcbal/qfeGpKpVcxGWAX0RknYgMycP03ooLABGpBVwPrHLr7an1ldX kt04OZnWm3G5 xvWmeNFmW3T/IqrnYhsEpGfRKRRLqf1ZlyISAmgM/CNW29vra/seHXfcuoNXLkmIr8ClTMYNMIY811OZpFBv6t ljWruHI5n6JAd BFt96fAK9hxfka8C7wcD7GdaMx5oiIVAQWichO 0wlzzy4vkpiHaDDjDHxdu88r6 MisigX/r9JbNxvLKvZVPmlSOK3IqV G9y6 3xbZqLuNZjVWOete /fAvUy G03ozrom7AX8YY9zNxb62v7Hh13yowid8Yc/tVziIKqOHWXR04Yn8 LiJVjDFH7cupaE/EJSK5mW8XYL0x5rjbvC99FpFPgR/yMy5jzBH7f7SIzMO6zFyKw tLRIpgJf1pxpi5bvPO8/rKQFb7S3bjFM3BtN6MCxFpCnwGdDHGxF7sn8U29Xpcbl/QGGMWiMg4EQnNybTejMvNFVfcXlxf2fHqvuVPVT1rgHoiUts u 4HzLeHzQcG2Z8HATm5gsiJ3Mz3irpFO/lddC Q4RMA3ohLRIJFpNTFz8CdbuU7tr5ERIDPgR3GmPfSDfPk spqf3GP90H7CYy2QJxdRZWTab0Wl4iEAXOBB4wxu936Z7VN8yOuyvb2Q0RaY Wf2JxM68247HjKALfgts95eX1lx7v7lqfvVjvxh3WQRwEXgOPAQrt/VWCB23hdsZ4C2YdVRXSxfwiwGNhj/y/vobgynG8GcZXAOgDKpJt CrAF2Gxv3Cr5FRfWUwOb7L9tvrK sKotjL1ONtp/Xb2xvjLaX4BHgUftzwJ8bA/fgtsTZZntax5aT9nF9Rlwym39rM1um ZTXEPtcjdh3XS wRfWl909GJiZbjqvrS sk7yjQDJW7vpbfu5b2mSDUkr5GX q6lFKKYUmfqWU8jua JVSys9o4ldKKT jiV8ppfyMJn6llPIzmviVUsrPaOJXKg9EpJXdGFyQ/QvPbSLS2Om4lMoJ/QGXUnkkIq8DQUBxIMoYM8bhkJTKEU38SuWR3VbKGiARq/mBVIdDUipHtKpHqbwrD5TEehNYkMOxKJVjesavVB6JyHysNyDVxmoQbqjDISmVIwWmPX6lfImIPAikGGOmi0gAsFxEbjPG/OZ0bEplR8/4lVLKz2gdv1JK RlN/Eop5Wc08SullJ/RxK UUn5GE79SSvkZTfxKKeVnNPErpZSf X96fFljfnaddAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"tarN = 1_000\n",
"nontarN = int(7*tarN)\n",
"nontar_rv = f_norm(-3, 0.5)\n",
"tar_rv = f_norm(-2, 0.5)\n",
"\n",
"run(nontar_rv, tar_rv, nontarN, tarN, \"Imbalanced dataset with normally distributed scores\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "8i61UylH1VtI",
"outputId": "4dab1a14-2257-4f00-981a-497a840d8a1b"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1 /AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy WH4yJAAAgAElEQVR4nO3dd3xc5ZXw8d ZUe/V6rJc5W5jBKZ3EloWCCmU1CVL2IRs3k0lnd1kS5LdvJANhJdNSCMkBAIJAVMCCaYYGwtj496t3nsbacrz/nFHjpBVRtadqvP9fPQZzdw79547ozl65qlijEEppVT0c4Q7AKWUUvbQhK6UUjFCE7pSSsUITehKKRUjNKErpVSM0ISulFIxQhN6hBCRu0TkoXDHYTcROS4il/l//6qI/GSKfW8RkedDENPPReQ7wT5PsIiIEZHF/t/vF5Fv2HTcchHpFxGn//5LIvIJO47tP94zIvJRu46nTqYJPYRE5GYRqfZ/aJr8f DnhTuuUDHG/Lsx5hMAIlLhT0xxY7b/2hjzrvBFGH2MMbcbY7493X5j/7FOcaxaY0yaMcY727gmKqAYY640xvxitsdWk9OEHiIi8jngbuDfgQKgHLgPuDaccanQGvsPLJJEalxqZjShh4CIZAL/CnzaGPO4MWbAGOM2xvzJGPPFSZ7zqIg0i0iPiLwsIivHbLtKRPaKSJ INIjIF/yP54nIUyLSLSKdIvKKiEz4HouI018FcsR/nDdFpMy/7RwR2eY/9zYROWfM814SkW LyGv 5z0vInljtn9YRGpEpENEvjbunGNLbS/7b7v931jOFpGPicirY/afTRyTvn5TEZHFIrLJ/7x2EXlkzLaVIvJn/2vbIiJf9T eKCJ3i0ij/ duEUn0b7tIROpF5Msi0gz8TEQcInKn/7XvEJHfiUjOFDF90f NrlFE/n7cthPVR5O9/yLyK6wCxJ/8r/WXxnxDulVEaoG/TPStCVgkIm/4X48/jsY5el3jYjkuIpeJyBXAV4EP s 3c8x7NvoNzSEiX/f/rbSKyC/F pyM/fb2URGp9b8PXxtznjPF qbb638ffhDIezsXaEIPjbOBJOCJGTznGWAJMA/YDvx6zLafAp80xqQDq4C/ B//PFAP5GN9C/gqMNncDp8DbgKuAjKAvwcG/R/Yp4EfArnAD4CnRSR3zHNvBj7ujy0BGP2HsgL4MfBhoNj//NJJzn B/zbL/zX/9bEbZxOH31Sv31S DTwPZPtj/x9/POnAC8Cz/mtbDLzof87XgLOAdcBa4Ezg62OOWQjkAPOB24B/Aq4DLvQfqwu4d6Jg/MnxC8Dl/uuZqtpkwvffGPNhoBZ4j/ 1/t6Y51wILAfePckxP4L1t1EMeLDejykZY57F ib6iP98ayfY7WP n4uBhUAa8KNx 5wHVAKXAt8UkeX x 8B7jHGZACLgN9NF9NcoQk9NHKBdmOMJ9AnGGMeNMb0GWOGgbuAtaMlGMANrBCRDGNMlzFm 5jHi4D5/m8Ar5jJJ v5BPB1Y8wBY9lpjOkArgYOGWN ZYzxGGN A wH3jPmuT8zxhw0xgxhfZjW R9/H/CUMeZlf9zfAHyBXvM4s4ljutdvKm6sxFtsjHEZY0a/MVwDNBtj/tv/eJ8xZqt/2y3AvxpjWo0xbcC/YP1TG UDvmWMGfbH knga8aY jHxvU8mrvb4gP86dxtjBvz7ThV7oO//qLv83xiHJtn qzHn/gbwAfE3ms7SLcAPjDFHjTH9wFeAG8e9Bv9ijBkyxuwEdmL9swTrOheLSJ4xpt8Ys8WGeGKCJvTQ6ADyJvnAnkSs6pD/9H8l7wWO zeNVincgFWyrvFXD5ztf/z7wGHgeRE5KiJ3 o93i/ rb7 IPOPftww4MsHpi4GacY/VACVj7jeP X0Qq3Q1 ty60Q3 JNARyDXbGUcAr99UvgQI8IaI7BlTxTHZ6zVRrDX x0a1GWNcY 7PB57wV410A/sAL1apeqJj1425P/41GWvC938adTPYXgPEE9jrOJ2JXrM43vkaTPZ3diuwFNgvVlXcNTbEExM0oYfG64AL62t2IG7Gaiy9DMgEKvyPC4AxZpsx5lqs6oQ/4P/K6S81ft4YsxCrJPs5EbnU33skzf9zpf9YdVhfV8drxEo4Y5UDDQHE3YSV KxgRVKwvp1MZLqS42zimPL1m4oxptkY8w/GmGKskvR9YnURnOz1mijWcv9jJw47bv864EpjTNaYnyRjzETX9o7X1H/syWKf8P2fJIbJYhtv/LndQDswAKSMbvCX2vNncNyJXjMP0DLN8zDGHDLG3IT19/9d4DERSZ3ueXOBJvQQMMb0AN8E7hWR60QkRUTiReRKEfneBE9JB4axSrcpWPWRAIhIgr/EnWmMcQO9WKU7ROQasRr1ZMzjk3VB wnwbRFZIpY1/vrpjcBSsbpYxonIB4EVwFMBXOpjwDUicp6IJGA1BE/2N9aGVRWxcJLts4lj0tdvOiLyfhEZrffvwkpMXv95C0Xk/4jVCJouIhv8 /0G LqI5IvVMPtNYKoxBfcD/yYi8/3nzBeRyXo7/Q74mIis8P D/NYUsU/1/rcw Ws9lQ NOfe/Ao/5uzUeBJJE5GoRicdqM0gc87wWoEImaZTHes3 WUQWiEgaf6tzn7ZaUkQ JCL5xhgf0O1/eNZdLWOBJvQQMcb8AKsh8utYyawOuAOrhD3eL7G gjYAe4HxdYQfBo77qxNuBz7kf3wJVsNdP9a3gvuMMS9NEtIPsJLF81gf/p8Cyf569GuwGtg6sKogrjHGtAdwjXuATwMPY5Usu7Aa6SbadxD4N A1f9XDWeO2n3IcTP/6TeUMYKuI9ANPAp81xhwzxvRhNUy B6sq4BBWgx7Ad4Bq4G1gF1Yj7FQDl 7xH/t5Eenzx7dhoh2NMc9gdXf9C1Z1yl8m2s9vqvf/P7D 6XSLv1dUgH4F/BzrmpOwGnRHCymfwioYNGCV2Me 14/6bztEZDsne9B/7JeBY1jfYD8TYExXAHv879E9wI3jqrTmLJm zUQppVQ00BK6UkrFCE3oSikVIzShK6VUjNCErpRSMSJsE/Lk5eWZioqKcJ1eKaWi0ptvvtlujMmfaFvYEnpFRQXV1dXhOr1SSkUlEZl0tLBWuSilVIzQhK6UUjFCE7pSSsUITehKKRUjNKErpVSM0ISulFIxQhO6UkrFCE3oSikVIzShK6VUjJh2pKiIPIi10ECrMWbVFPudgTVR/weNMY/ZF6Kaix7eWjvtPjdvmHQ1tvCo/tn0 1R9PPhxqDkrkBL6z7FWCJmUfz3B7wLP2RCTUkqpUzBtCd0Y87KIVEyz22eA32Mt36VUSExXio 4ErxSQTbryblEpAS4HriEaRK6iNwG3AZQXq4fNjUHabWMCiI7GkXvBr7sXwl8SsaYB4wxVcaYqvz8CWd/VEopdYrsmD63CvitiADkAVeJiMcYM9Fq9koppYJk1gndGLNg9HcR TnwlCZzpZQKvUC6Lf4GuAjIE5F64FtAPIAx5v6gRqeUUipggfRyuSnQgxljPjaraJRSSp2ysC1Bp a2QAYOjefx WjrG6Z3yI0BFs9LI84RZYOdh7qgZjM0VIPXDQWroGwD5CyY/rlKTUMTuop4Hq PbTVdbDrQSq/Lc Lx1MQ4zpifzcXL5hHvjILE3tcMm/8H3IOQXwnxydC0A rfgHW3QMnp4Y5QRTlN6Cqitfa5 PWWWtr6h5mfk8IVq4rISU1gaMTDtuNdvHSwjaYeF7ecVR7ZpfXBDtjyY3A44aI7Ia3Aetztgm3/C289BN4RKD87vHGqqKYJXUWs/U29PFJdR5xD OjZFSwtSMPfPRaAysIMth7r4I87GvntG3XcdGY5TodMccQw8Xnhjf8FnxvOvuNvyRwgPgk2fBKqH4Rdj0JmWfjiVFEvgos0ai7b29jLQ1tryE1L4NMXL6ayMP0dyXzUhgW5XLOmiL1Nvbx0sDUMkQbg CvQ3wzrboaM4pO3OxPgtI9AQhrsfNiqW1fqFGhCVxHnSFs/v91WS0lWMv9w/kKyUhKm3P cRXmsKs7g5YNtdA2OhCjKAA33w8FnrTrzeSsn3y8hBVa/H3ob4dW7Qxefiima0FVEae1z8dCWGnJSE/jo2RUkxjkDet6Vq4sAeGZ3czDDm7mDG6268RXXwwTfMN6hcDUUnwYvfw96m0ITn4opmtBVxHB7fTyyrQ6nQ/j4uQtISQy8iSc7JYELluazu6GHI239QYxyBoa6oXYLlJ8D6YWBPafyaqvOffP/BDc2FZM0oauI8dyeZpp6XLxvfSmZyfEzfv4FS/LJTI7npQMRUpdeuxmMgYUXBf6c1DxY8wGrkXSgPViRqRilCV1FhMOt/Ww 0sHZi3JZVpRxSseIdzo4a0EOR9oGaOl12RzhDHk91gCighVWkp6J8z4HHhe8fm9wYlMxSxO6Cjuvz/D0rkayU K5YmWAVROTqKrIIc4hvH60w6boTlHTdhjph4oLZv7c/KWw8jqrq Nwn/2xqZilCV2FXXVNJy29w1y5qmjWIz5TE NYV5bFW7Vd9AyGsfvfsVes/uZ5S0/t Wd9Ckb6YPfj9salYpomdBVWQyNe/ry3hQV5qawsPrWqlvHOXpSL22t4pHrm88XYorcReupg/jnT92yZTOkZkL8M3vqVvbGpmKYJXYXVK4fbGBrxcvXqogkHDp2Kosxk5uem8Mi2OowxthxzRhreBHFA8fpTP4YInPZhqN8Grfvsi03FNB36r8JmxONj69FOVhRnUJyVbOuxTyvL5g87GtjT2Muqkkxbjz0l44PG7ZBXCYnpszvW2hvhhbtg 6/gin//2 O6LqmahJbQVdi8WdPJkNvL Ytn2AskAKtKMoh3Cn/c0WD7safUecyaIteOmRNT82DZVbDzN CJsBGwKiJpQldh4TOGVw 3U56TQnluqu3HT0mI48Kl83hyZyNeXwirXRretOZmKVxtz/HW3gxDnXBskz3HUzFNE7oKiz2NvXQNujkvCKXzUdedVkxL7zBbQ9WF0ee15jcvWAVxifYcc9HFkJAOe/9oz/FUTNOErsJi69EOslPiWWFTz5aJXLqsgNQEJ3/c0Ri0c7xDx2Fr8Yri0 w7ZlwiLH037H/aGqyk1BQ0oauQa ge4mj7AOvnZ OwqWfLRJITnLx7ZSHP7G5ixOML2nlOaNkNjnhrZkU7rfg7q9ql5jV7j6tizrQJXUQeFJFWEdk9yfZbRORt/89mEVlrf5gqlvzhLauh8rSy7KCf66rVRfS6PMEfOWoMNO ykrlz6ul Z2zxZRCXDPuetPe4KuYEUkL/OXDFFNuPARcaY9YA3wYesCEuFaOMMTy vZ75uSnkpNqc CZw3pI8UhOcPLMryNPRNu0EV7dVf263hFRYchnsewp8IfimoaLWtAndGPMy0DnF9s3GmC7/3S1AqU2xqRi0q6GHI20DISmdAyTFO7lkeQHP723B4w1iMjywEZDgJHSA5ddaqx41bg/O8VVMsLsO/Vbgmck2ishtIlItItVtbW02n1pFg8e3N5AQ52B1CAf7XLWqkM6BEd44Pmm5ZPb2b4ScBZCYFpzjL7oEEDj8YnCOr2KCbSNFReRirIR 3mT7GGMewF8lU1VVFYYx2SqcfD7D07uauKRyHskJga1EZIcLK/NJinfwzK5mzlkUhG6SXTXQsguW/509x5tsJGhmqTXI6NzP2nMeFXNsKaGLyBrgJ8C1xpgwz1uqItWuhh7a oZ518qC6Xe2UUpCHBctncdze5rxBWOQ0QH/l9ICmwYTTSZ/GXTXWF0jlZrArBO6iJQDjwMfNsYcnH1IKla9sK8Fh8DFlfNCfu4rVxfS2jfM9tqu6XeeqQNPW3O3pOXbf yx8pdZc8W0HwrueVTUCqTb4m A14FKEakXkVtF5HYRud2/yzeBXOA EdkhItVBjFdFsRf2tVI1P4fsEPRuGe SZfNIcDrsX0R6qAuOv2bNuRJs2RXWQKO2/cE/l4pK09ahG2Nummb7J4BP2BaRikn1XYPsa rlq1ctC8v505PiOX9JHs/ububrVy 3bapeDv0ZjNda3LllwqEa9nE4IXepldCNOfW51lXM0pGiKiRe3Gct3Hzp8tDWn4915eoiGrqHeLu x76D7n/aWpnIjtkVA5FfaX0rGIiQhbBVRNGErkLihX0tLMxLZVF kLr1BeDy5QXEOcS ahfPMBx AZZeAY4QfZRGl7TrOBKa86moogtcqKAbHPGw9WgnHzl7fkjP /DWk5egW5CXyu q6yjLTuaWs2YZz7FXrIWgl109u PMRGo JKRB51FriTulxtASugq66uNdjHh9nL80yL1AArCqOJPOgRGae12zP9iBjRCfAgsunP2xAiUCuYugU0vo6mSa0FXQvXaknXincEZFaIb7T2V5cQYC7G7ond2BjLH6ny 6BOKTbIktYDkLrXr0oSB0wVRRTRO6CrrXj3RwWlk2KQnhr FLS4yjIi V3Y2zbBht2gl9jaGtbhmVs8i61Xp0NY4mdBVUPYNudjf0cPai3HCHcsKqkkza oY53Np36gc5sBHEAUveZV9ggcoohrgkrXZRJ9GEroJqy7EOfAbODeJSczO1sshaJemZXbPo7XJgI5RtsBZyDjVxQPYCq2FUqTHC/x1YxaTRHiZ/2tlIvFPY39zL4db MEdlyUiOZ35OCht3N/OZS5fM/ADdddZiFpf/q/3BBSp3IezfB8P9wZvhUUUdLaGroDrS1k9FbipxoeqnHaCVJZnsa qlpmNg5k8 Kx1WxmG vNRo/XoXcfCF4OKOJH1KVMxpc/lprVvmIVhHEw0mZX xalPaZDR/qchdwnkLbY5qhnILLWqXrpP7muv5i5N6CpoajqsaV4X5KWGOZKTZacksLY0c YJ3dUDx1 FyiuDE1ignAlW42h3TXjjUBFFE7oKmpqOAeIcQnFWiPtpB iKVUXsrOumoXso8CcdfhF8bqgMweyK08kqt0roRtcZVRZtFFVBU9M5SGl2csTVn4 6clUh3312P8/ububW8xZM/4Tqn8Fbv7IWbW7dG/5pbLPmQ81mGGizJghTc15kftJU1HN7fTR2DzE/N/KqW0ZV5KWyvCiDZ3c3BfYEn9dK5PNWWvXX4ZZVbt1qtYvyi4C/ShWL6ruG8Bkoz0kJdyhTunJVIdU1XbQGMrdL5xFwD0HBquAHFoi0AnAmQpc2jCqLJnQVFKPdAedHQUI3Bp7dE0DjaNNOcMRbc5JHAnH8rR5dKTShqyCp6RgkPy2RlMTIbqZZUpBOZUE6T7zVMPWOPi80vw0FK6xl4CJFVjn0NoDXE 5IVATQhK5s5/MZajsHmZ8b2aXzUTecXsJbtd0caZtiJGvt6zDcB0XrQhdYILLKrSXweqf5h6TmBE3oynZH2voZcnujJqFft64Ep0P4/Zv1k 05w9Wdcu8FaELLBCjDaM9Wu2iAkjoIvKgiLSKyIQr4IrlhyJyWETeFpH19oeposlbtd0AlEV4/fmoeRlJXLAkjyfeasDrMyfv4PPCvietZB5J1S0ASVkQnwo9WkJXgZXQfw5cMcX2K4El/p/bgB/PPiwVzXbWd5MU7yAvLcKS3xRuOL2Uph4Xrx/pOHlj7Rbob4HitaEPbDoikFkCvVN8u1BzxrQJ3RjzMtA5xS7XAr80li1AlogU2RWgij4767spyUrGIRLuUAJ22fICMpLieOzNupM37nrUWmpu3srQBxaIjFLoa7K Sag5zY469BJg7Keg3v/YSUTkNhGpFpHqtrY2G06tIo3L7WV/Ux l2dFR3TIqKd7Je9YW8 yeZvpc7r9t8AzDnidg2TWRV90yKrPESub9s5jfXcUEOxL6RMWwCSoiwRjzgDGmyhhTlZ8f/gWDlf32NvXi8RlKs5PDHcqM3XB6KS63j427xowcPfRncHXDmg GL7DpZJZat1qPPufZkdDrgbIx90uBRhuOq6LQ23VWg2i0ldABTivLYmF Kr9/c0xifPsRSM2HhReFK6zppeZbsy9qPfqcZ0dCfxL4iL 3y1lAjzEmwMkxVKzZWd/DvPREMpPjwx3KjIkIN6wv5Y3jndZI16FuazGLVe8DZwQPkBIHpBdpCV0F1G3xN8DrQKWI1IvIrSJyu4jc7t9lI3AUOAz8L/CpoEWrIt7O m7WlmWFO4xT9t71JYjA77c3wN4/gHcE1nwg3GFNL7PUGlykU nOadMWO4wxN02z3QCfti0iFbV6htwcbRvgvadN2CYeFYoykzlvcR6/f7Oef879FZK/HIpPC3dY08sohZrXYLAzPAtXq4igI0WVbXY39ABEdQkd4H2nl5LacxBpqIb1H7b6eke6TP8/0R6tR5/LIrhiUEWbnfVWg iakizqOmewClCEedeKQnoTNuEhjj96zmN4qzWsflHtycMxNizICXV4E0svAgT6GoEIm29GhYwmdDVjD2 deN6QjbuayUlN4Old0d0mnuzwcEPcqzzvrqJHMojMBfTGccZbvV36tC/6XKZVLso2jd1DFGdGRfqb2v6nSPH28rDn4hPVSFEhvcgaMarmLE3oyhZDI146B0Yozoq AUUn2fYgJqucppwzebO2K9zRBC69EAbarZ45ak7ShK5s0dRj1ZlHfUJv3Qc1ryJVt3JDVTk1HYN09A HO6rApBcBxppITM1JWoeubNHYHbkJfVHtoxM PrYp4Ej5 wGo2vN/WeRI4A/mYgRBgO21XVy ojAEkc5Shn9OPK1Hn7O0hK5s0djjIjM5nrQIX3JuKnHufhY0/ImaoisYTsgmMzmeJQVpbK/txmcmnJ4osqTkgcOp9ehzmCZ0ZYuGGGgQXdD4J K9gxwqv/HEY vLs08MmIp4DiekFWgJfQ7ThK5mbcTjo71vOCKrWwJmfFTWPExH5ko6MledeHh5UQZJ8Q62R0vjqPZ0mdOi9/uxihjNPUMYIrP PFCn7/0PMgaOc7j0vSyqe wd287PKuCleg DuQ5SnBE V0p6ETS8Ca5eSMoIdzQqxLSErmatoccFRHdCL zYwnBcBp0Zy0/admFuD27jYGtXehgim6F0f8No2/7wxqHCQhO6mrXG7iFSE5xkJEXnF76UoWYyB47TknsGRpwnbV c4qIgYYTNnVFQ4k3398Zp3RveOFRYaEJXs9bc46IoKxmJhkmsJlDYuRWvI57W7PUTbheBc3N62dWXQrf75IQfUZKzwZlo9adXc44mdDUrXp hpddFYUZ09nCJd/eR27OLtqx1eJ2TVxmdm9OLQXi9K8JL6eKwSulaQp TNKGrWWnvH8bjMxRFaZfFgs5tiPHRnLNhyv1Kk0eYn zitaiodinSEvocpQldzUqzv0G0MAoTusPnZl7Xm3SlVzKcOP00uOfm9HJoIJmW4QhfXi 9EAbaoL8t3JGoENOErmaludeFU4T89MRwhzJjed1vE 8dojn3rID2Pye7FyDyG0dP9HTRUvpcowldzUpTzxD56YnEOaLsT8n4KOzYQn9SEX0p5QE9JT/RQ2XqIK9GS0LXapc5J8o hSrSNPe4orL PKd3P8kjHTTlnTujJebOzeml3pVI7VAEfyNJTLd6u2jD6JwTUEIXkStE5ICIHBaROyfYnikifxKRnSKyR0Q bn oKtIMDHvodXmir/7cGIrbX2UoIZfOjGUzeurZ2X04MJFdSheBeSu0hD4HTZvQRcQJ3AtcCawAbhKRFeN2 zSw1xizFrgI G8RSbA5VhVhmnujs0E0c AIqa5mmvLOsbr5zUBGvJc1GQNs7swgoidgnLfcSugRHaSyWyB/zWcCh40xR40xI8BvgWvH7WOAdLFGlqQBnYDH1khVxGny93ApyoyuIf/Fba8xEpdOe aaU3r OTm9tI3Ec3Aggq973nIY7oXehnBHokIokIReAtSNuV/vf2ysHwHLgUZgF/BZY8xJsxiJyG0iUi0i1W1t2qUq2jX3DJGeGBdVc6CnDdaRMVhDU 7ZGMepjfo8I6ufePFFdp/0ef4v0a06p8tcEkhCn6jFaPz3uHcDO4BiYB3wIxE56a/dGPOAMabKGFOVn58/42BVZGnucUVddUtx 2u4ncmTDvMPRIrTx7rMAd7oTsMXqTUa f62gdY94Y1DhVQgCb0eKBtzvxSrJD7Wx4HHjeUwcAyYWWuTiipen6GlbziqEnqyq5XsvoO05JyJzzm7Jp6zs3vpcsdT3R6hg4xScvwjRrWEPpcEktC3AUtEZIG/ofNG4Mlx 9QClwKISAFQCRy1M1AVWdr6h/FG2ZD/4vbX8Driac45c9bHWp85QLz4eLo grsv5lfqNLpzzLQJ3RjjAe4AngP2Ab8zxuwRkdtF5Hb/bt8GzhGRXcCLwJeNMe3BClqFX3OPtSh0YZQ0iCYNt5Hbs5uW7Cq8cbOPOdlf7fJMQ2JkV7u0HdCeLnNIQK1ZxpiNwMZxj90/5vdG4F32hqYiWXOPC6dDyE L4BLqGKWtL FzxFsDiWxydnYv246lU90ez5n5btuOa5v8ZeAegJ46yApsNKyKbjpSVJ2Sph4X89ITcToifw70lKFGcnv30ZR7Fp64FNuOuz5zgASHYWNDhP5TG20YbTsQ3jhUyGhCV6ckmob8l7X Fbczmebcs209brLTx8WFw2ysj9Bql/xK61br0eeM6OlArCJG/7CHvmFPSBa1WFT76LT7HCl//6TbiltfJqv/CDUFl N12l Svqp0mOcakyKz2iUlB9IKtKfLHKIldDVjf5sDPbIbRB0 N v3f5 hhFxabOjZMpFLi0YivNpFe7rMJZrQ1Yw1 Xu4RHqVy9LjvyZj4Dg1he865VGh00mLN1xUOBLB1S7LtafLHKIJXc1Yc4 LjKQ4UiN4yH/qYAOrD/ YhvwL6ElfEtRzXV3qotXljMxBRvmVMNKnc7rMEZrQ1Yw1RfqQf Njw65vAkL1iq8G/XQRXe1yoqeLVrvMBZrQ1YyMeHy09Q1TmBG59edLa35DYecbvLn8SwykjJ9Hzn6j1S7PRGK1y7zl1q02jM4JmtDVjBxp68drInfIf1bvAdYduJuG/PM5Wnp9yM57damLFpeTNxUIfNcAACAASURBVDsirNolJQdS87WEPkdoQlczsq/JWig5EqtcEka6uWD7ZxmJz2Dr6n d0dJyszVa7RKRc7uMTgGgYp4mdDUj 5v7iHMIeRE25F98bs7d8UWSXa28sv5uXIl5IT1/RFe75C zSuja0yXmaUJXM7KvqZd5GRE25N/4OGvXtyjq2MK2ld gI2t1WMKI2GqX/Epr9aK pnBHooIscvudqYi0r6mX Tmp4Q7jb4zh9H3fY0Hjn9i55A6OloWu3hxg67HOE79neh3ESzoP7jX4yqzHNyzICWk8Exrb0yWjOLyxqKDSEroKWGufi/b kYiqPy9pe5nKml zv LD7Fl0W1hjGZ1Sd0tXemRVu2hPlzlDE7oK2P6mPiByGkQLOt6gtG0TR0v ju3LvhDSRtDJnJXdR5c7whaQTs2DlFzt6TIHaEJXARvt4VIUgkm5ppPbvYuK5mfpTK9k66p/AYmMP XTM60FpLd0pYc7lHcabRhVMS0yPgUqKuxr6qUwI4mUMA/5z o7yKKGP9CTWsHh0hswjshpCorYahft6TInaEJXAdvX1MfyovCWPFMH61lS9xgDSUUcLPtgRCXzURFZ7ZK/DFw90N8S7khUEGlCVwEZ9ng50tbP8qKMsMUQ5 lnad2jjMSlcWD TfiCML 5HSKy2mWev6dL677wxqGCShO6Csjh1n48PsOyMCV0MV6W1P0ep3eIQ UfwBMXQV0nx4nIahddjm5OCCihi8gVInJARA6LyJ2T7HORiOwQkT0issneMFW47W20GkRXFocnoRe3vULGYA3Hiq9hMKkwLDHMxGi1S8QMMkrNh RsbRiNcdMmdBFxAvcCVwIrgJtEZMW4fbKA 4C/M8asBCZfE0xFpb1NvSTFO6jIDX3JOGWomeK2V2nPXE1H1pqQn/9UjFa7RMzcLiL xS40oceyQEroZwKHjTFHjTEjwG Ba8ftczPwuDGmFsAY02pvmCrc9jX1sqwwI RD/sV4Wdj4JJ64ZI4XXhHSc8/GaLVLRM3tkl9p1aFrT5eYFUgXgRKgbsz9emDDuH2WAvEi8hKQDtxjjPmlLRGqsDPGsLexl2vWhn7YeGHHFlJdzRws yDeuAjqNRKAs7L72HYsne0d8VTlhXgB6eqfnfyYq9v62fw/kJgOVR8PbUwq6AIpoU9UJBv/Lz4OOB24Gng38A0RWXrSgURuE5FqEalua2ubcbAqPBq6h h1eVgR4gbRxOEOStpeoSttCV0ZlSE9tx1Oz wnwWF4KlKqXdKLrFudpCtmBZLQ64GyMfdLgcYJ9nnWGDNgjGkHXgbWjj QMeYBY0yVMaYqPz//VGNWITbaILoixA2iaw7dh/g81BZeHtLz2iXZ6YusKXXTCqzbPu2LHqsCSejbgCUiskBEEoAbgSfH7fNH4HwRiRORFKwqGe3wGiP2NvUiAssKQ9evOrPvEIvqHqM1pyrkc5vbaXRK3e2R0NslMQPik6G/OdyRqCCZNqEbYzzAHcBzWEn6d8aYPSJyu4jc7t9nH/As8DbwBvATY8zu4IWtQmlfUy8LclNJSQjdqMw1h36EJy6VhvwLQnbOYIiolYxEIK0Q jShx6qAPqHGmI3AxnGP3T/u/veB79sXmooUe5t6WVOaFbLzZfUeoKzlL xa/I944lJCdt5gGF3JaGN9It9Y20/Y1wVJL4Tmt8MchAoWHSmqptQz5KaucyikDaKrDt/PSFwa ytuCdk5gymiql3SCmBkAIb7wh2JCgJN6GpK /1T5oYqoWf1HqC85QUOVHwId3xmSM4ZbBFV7XKip4tWu8QiTehqSqNzoIeqh8uKoz/F7Uxlf8WHQnK UDixgHRDBPR2Ge3porMuxqTIm3tURZS9Tb3kpiYwLz34pcvkoWbKm//Mwfk3zah0vqj20SBGZY rS10835gZnkFGYyVlQlySltBjlJbQ1ZT2NvWyojgDCcHybktrHwHj48D8m4N rlAbrXYJ yAjEathVAcXxSRN6GpSbq Pg839Iak/d3qHWFz3KA0FFzOQUhr084VaWrzh8uJh/lSXhNsX5mDSi6yErnO6xBxN6GpSR9sGGPH6QrKoRUXj0yS6e2Kq7ny868pddAw7eKUlIbyBZBSDe1BL6TFIE7qa1N6mHiAEDaLGUHn8ITozltOWfXpwzxVGFxaOkJ3g4/GaMC yne6fZK1lT3jjULbThK4mtbexl4Q4BwvzgjsHemHH62T1H FAxYesOt4YleCA95S5 HNjIr3uMF5nhr/rYosO5o41mtDVpPY29bKsMJ04Z3D/TCqPP8RQQi41UTTf am6rtzFsE94tiGMjaPxKZCUpSX0GKTdFtVJHt5aizGGt2q7WVGUwcNba4N2rvT Y5S0vcLbiz FzxnmuuUg2Hqs8x33jYGixDR vj O cbatmFBTugDyyjWhB6DtISuJtTr8jA44qUoM7j1vZU1v8Yr8Rwq/0BQzxMpRODC3B729qfQPBzGqQAyiqH9IHhGwheDsp0mdDWhpp4hAIoyg7dKULy7h4UNT3K8 GqGE3ODdp5Ic0FuD4JhU3sYpzZILwafx0rqKmZoQlcTaux2AVAYxBL64rrHifMOWY2hc0hugoe1GQNs6sgM31QAGdrTJRZpQlcTauweIi8tgaR4Z1COLz4PS2sepjnnTLqjcHm52bo4r4cOdzxv9wa3B9GkUvPBmaA9XWKMNoqqCTV0D1GRG7y5yEtbXiTV1Ux9/oVRMReL3U7P7Cfd6eEv7Zl8ElfoA3A4Ib9SE3qM0RK6Okmfy03PkJuSrODVny87/hCuhGy605cE7RyRLN5hOD 3l qedNpcYeqTXrAamnfpFAAxRBO6Okljt9UgWpIdnBJ6bvcu8rt30JxzJsjc/RO8PL8brxF dyx4/zinVLQWBtp05sUYMnc/TWpS9d1DCFAcpAbRyuMP4Xam0p61LijHjxbFSSOsSh/g4WPJeMNRSC5aa9027QzDyVUwaEJXJ2noGiIvPZHEIDSIJrtaKG9 niNl1 N1RsAKPmH2rvxuGgad/LUpDIOqClcBogk9hgSU0EXkChE5ICKHReTOKfY7Q0S8IvI 0JUodbQPURpkOrPl9Q ghhvTM55fipOz qjIMnLQ0fDUO2SmA65i3TR6BgybUIXESdwL3AlsAK4SURWTLLfd4Hn7A5ShU5Lr4s l4fiICR0p2eQJbW/o77gYgZSymw/fjSKE7hp4RCbmhM42hecLqJTKlqrJfQYEkgJ/UzgsDHmqDFmBPgtcO0E 30G D3QamN8KsR21VtT5pZm25/QF9c/TqK7h30LPm77saPZLQuHiHfAg4fCUEovWgs9dTDQEfpzK9sFktBLgLox9 v9j50gIiXA9cD99oWmwuHthh4E 4f8i8/NsmO/pDV7Pe3Zc7sxdLz8JMP15S4eq0mmazjEXRgL11i3zVpKjwWBJPSJ/sLGt8nfDXzZGOOd8kAit4lItYhUt7W1BRqjCqGddd3My0gkIc7e9vL5Tc R6mrS0vkkPrF0EJdXQl XfqKni9ajx4JAPrX1wNgKz1Kgcdw VcBvReQ48D7gPhG5bvyBjDEPGGOqjDFV fn5pxiyChafz7Cjrpsyu/ufG8PyYz jO20RDfMusPfYMWJJhpeLCof5xeFkXFMWi2yWkgOZ5VqPHiMCSejbgCUiskBEEoAbgSfH7mCMWWCMqTDGVACPAZ8yxvzB9mhVUB1tH6BnyE15jr0Jvaj9NbL7DrJvwcfm9ECi6dy2dJD2YSePHg91KX0NNO0I7TlVUEw7l4sxxiMid2D1XnECDxpj9ojI7f7tWm8eI96q7QKgzIaEPnZ luXHfsFIXDpOj2tOztsSqLPz3ZyeO8J9 1P4QMUQiaHq9FKyHvY/BYOdVoldRa2AikvGmI3GmKXGmEXGmH/zP3b/RMncGPMxY8xjdgeqgu tum7Sk LIT7dvwE/qYAMZgzU05Z6FcYShW14UEYHPLh kacjJo8dDuJB0SZV127A9dOdUQaHff9UJ22u6WFeWhcPGhZqLOjbjcSTSmr3etmPGsvMLRjgtx82PD6Qy4gvRSUvWAwL120J0QhUsmtAVAP3DHg629LG PNu2Yya7Wsnp3UdLThU HeYfEBH47IoBGgadPBKqSbsS02HecmioDs35VNBoQlcAvF3fjc/AaeVZth2zpO1lfI4EmnPPtu2Yc8GFBSNsyBvh7r2p9LlD1C 9tArqq3Uq3SinCV0B8FZtNwCnldlTQrdK53tpzjkTT1zwFsqIRSLwtTX9dAw7 PH EL12JVXg6oaOI6E5nwoKTegKsHq4LMpPJTPFnpXoS9o24XMk0KSl81OyJsfD9eUufnoohYbBEHxMS0cbRrXaJZppQlf4fIbqmi5On29P6Ty7Zy 5vftoztmANy5MizfEgC s6gfg399OC/7J8pdBQppV7aKiliZ0xYGWProH3WxYkGvL8dYduBu3M5mmPC2dz0ZJio/PLB/g6fokXmwM8nzpDicUn6Yl9CinCV2x9ag1096GhbMfVFLQ/jpFHa/TmHc XmcI 1LHqNsqB1ma4eGbO9IZ8AS5gbTsTGuN0ZGB4J5HBY0mdMXWY52UZCVTOts5XIyPdQfuZiCpiJacKnuCm MSHPDv6/toGHTy/d2pwT3Z/HPA54G6rcE9jwoaTehznDGGN4512lI6X9D4FLm9e3l76R0Yx7SzSqgAVeW5 eiiQX5 OIVNzUGseinbAOKE468F7xwqqDShz3GHW/vpGBjhrFnWn8d5Bll74G46MldxrPgam6JTo76ypp lGR4 vy2ddleQql4S06F4HdRoQo9WWoya47bYVH 4uhPSBlu49XTfqAzKs7Q1mOdAe33D6UDfHXffD7xcjJfXlyPw5/XNyywcUKt efC1vvBPQTx2kMp2mhCn O2HOukKDNpxlPmjp01MXGkixVHH6Q9czWZfYfI7Dtkd5gKKE8e5mNlLfxvbRG/acjnltIgLBJTcR5s/qE1r8sCnbs 2mhRag4zxrD1aCcbFuQgpzohlzFUND2DESe1BZfaG6A6yWX5PVye38WTLbls6siw/wTlZ1nfsLQePSppCX0O29/cR3v/MOcsyjvlY2T37Ser/zA1he/CHR EBKNO8rGyFhpdCTxQU0h2vIcNdh48KRMKV2s9epTSEvoctumg9ZX9wspTWw7Q6R2moulZBpIKac45087Q1BTiBD63sIHipBH 60gp1e32TNdwwvzzoO4Nqx5dRRUtoc9hmw60sawwnYKMUxsAVNbyAvGePg6WvV8bQkMsLc7H15bUcdeB XzklQy sriOpWmuSfefUcPpoktgy71WtcuSy2yIVoWKfgrnqP5hD9U1nVxUOe Unp/Rf4yCrjdpzj2LgZRSm6NTgciK9/L1pbWkx3n5zqFydvfZNDNjxbkQlwyHnrfneCpkNKHPUZsPt P2Gi5cOvPqljjPIAsa/4QrIYf6eRcHIToVqLwED3ctrSU/wc1/HiplW7cNE3nFJ8OC8 Hwn2d/LBVSWuUyR2062EZqgvOUZlhcv 97JLq72VfxUXwOm tv1YzlJHj4VmUt3z1Uyn8fKeHjZS28e1739E s/tnk2xLTofOoNT967iL7glVBpSX0OcgYw6aDbZyzOI EuJn9CZQ2v8Di t/TlHcufanzgxShmqmMOC/fWFrL sx Hqwr5KH6fHyzWXwof7l1q9UuUSWgT7OIXCEiB0TksIjcOcH2W0Tkbf/PZhFZa3 oyi6HW/up7xqacXVL8lAzG3bfRUfmSurzLwpOcOqUJTkNX1jUwOX5XfypJZf/OVaM23eK4wtS8yB1HhzSapdoMm1CFxEncC9wJbACuElEVozb7RhwoTFmDfBt4AG7A1X22birGRF414qCgJ/j8Lk5b8cXcPhG2Lz2PzEOZxAjVKfKIXBrWQs3l7SyuSuDfztURr/nFL Iz1sOx1 F4X57g1RBE0gd pnAYWPMUQAR S1wLbB3dAdjzOYx 28BtNtDBNu4q4kz5ucwbwbdFdft/wH53Tt5dd336UutYF7HtiBGqGZDBK4t7CQvwc19x4v45oH5DHnryE/0TPqcCbs1Fq6GY5vg4LOw n1BjFjZJZB/3SVA3Zj79f7HJnMr8MxEG0TkNhGpFpHqtrYgzEOhpnW4tZ8DLX1ctbow4OdUNDzFspqH2D//Q9QWXRHE6JSdzs3p42tL6uh2x/H1/RUcHUyc2QFyFkJaIex5IjgBKtsFUkKfqBJuwuYWEbkYK6GfN9F2Y8wD KtjqqqqZtNko07Rxl1NCOBy 3h4a 20 d17WDDrm/Skn06O5Z9LvgBKlutSB/iXypr I9DZdx1YD6fW9jAuswAVyQSB6y8zuoN4 qxpgVQES2QEno9UDbmfinQOH4nEVkD/AS41hjTYU94ym4bdzVRnptCRvL03Q1TB u4YPtnGUwu4pX1d2sXxShVljzCd5bVUJQ4wncPl/KX9hkk5lU3gHcY9m8MXoDKNoEk9G3AEhFZICIJwI3Ak2N3EJFy4HHgw8aYg/aHqexwpK2f/c19rC6Z/gOd7GrlkjduQ4yXl6ruZSQhKwQRqmDJSfBwV2UtqzMG H81RfyuMQ8TyHfk0jMgswz2PB70GNXsTZvQjTEe4A7gOWAf8DtjzB4RuV1Ebvfv9k0gF7hPRHaIiC4dHoEee9NaFGFV8dQJPXGki0ve AeSRjp5qerH9KVWhCZAFVTJTh9fWlzPxbnd/L4pjx/XFOHxTfMkEVh5PRz5CwzoF 9IF9BIUWPMRmDjuMfuH/P7J4BP2BuastOIx8ej1XVcsqxgyuqWZFcLF2/7JKlDDbxU9WM6slaHMEoVbHECn5zfTG6Cm8ea8ukcieNzixqmftLam6xFL3b8Gs79p9AEqk6JDv2fI17c10J7/wg3byijuWd4wn3SB2q4eNttJA 3c6D8RtIHjpM cDy0gaqgE4H3F3eQn DhgZpCvnWgnOUl/RQmT1JcL1gB5edA9U/h7DvAoQPMI5W M3PEw2/UUpSZxIVLJ55dsajtVd69 SbiPIPsq/iIVrPMARfl9fDlJXW0Dcdz/V y2d8zxWCxM26FruNW1YuKWJrQ54C6zkFeOdTOB88ow l4Zy9Uh8/N6kP3clH1pxhILua5cx5mILk4TJGqUFubMchdlbV4Dbz/r9lsbp2kOm7530FqPmz7SWgDVDOiCX0O OXrx3EIfKCq7B2P53Tv5t2bb2T14fs5VvIenj/7VwyklE18EBWzKlKGeeKSLopSfHz0lSwePT7BCOK4BFj/UWvUaOex0AepAqIJPcZ19A/z0JZa3rO2mOKsZAAy o5w7luf54rXbyJppJNN63/IljX/hteZHOZoVbiUpPh49KIuzshz88XqDL5cnY7LO26nMz4BzgR4 b/CEqOanjaKxrgHXzuGy Pln87KgZ2/hZe/zzUdh/E64qnPP5/m3LNJGm5nUe2j4Q5VhVlmguGX53dz995UfrQ/le2d8fxHQSdVFf55XjKKrKS 9cdw3j9D3uLwBqxOIiag0QX2q6qqMtXV2l09aHxe o9V8/Nf/oSrknez0LUPMJCSS23aOtqy1 GJSw13lCpCjJ c6 XmBL6yPZ2GQScfrCrjny5bQklWMvS3wT1rYNnVcMM769Onm0ri5g3ltsc9F4nIm8aYqom2aQk9loz2QjjyVzj2Mmmubj6F4MpYB2fdCUsuh8YdNB0PYDUbNaddUDjC8 /q5O6OM/n55uM8/lY97z2tlJs3lLPmzNuQ1 6Bcz9rzcioIoYm9Gg31A07fwNvPwKNb1mPZZTQv/AKvrUrj7jFl/Ldj17yt/2b3g5PnCrqpMYZvnb1Cj527gIe2HSE326r45HqOtbnn8FD8Vnw ztI uSLOOI0jUQKfSeiydg1IF09cPhFqNsC3hHILLW6lhWshNR5/J/NWWz2xfPigrqp145UairVP6ME JcS Pw84em6RJ6oTeIrAzdzj/tefvAfX6B91a1cvrwAt9dHvFP7WYSTJvRo43HB4Rfg6CYwXiheDwsvshK63wuNCbzQlMhXVvdTlDLdZB1KBSYj3nDTQhc3LXTR6VpC09ZVfLr/N1z71joe3ppPvFOoLMzg9PJslhSk4ZBTXP5OnTJN6NHCGGjaac165 qB4tOh8kpr7ccxOoaFr7 VzpIMD3 /ZDBMwapYl5MEnHkDvHY3GzMe4LULH ZHrzaxq6GH3Q09ZCXHc96SPKrm58x4IXJ16rSXSzTob4Wn/hn2PwUZJbD6/ZBdcdJuXgPXP5/Kvv5kvr2shgUpE8/ZopRdBpOLubD6U9QXXMqrp/03HmPY39TH5iMdHO8YICXBybmL8zhrQS63nr8g3OHGBO3lEs12Pw5Pfx5GBqw68gUXwiQLNN zN5W3 1L55PwmTeYqJJryz2XHss xfv9/sX7f99i /EusKslkVUkmx9sH2HSwjT/vbeHlg220Dwxz63kLyEub4VJ4KmCa0CPVQAds/Ly1nmPxerjux1D7 qS7/ pIMj/cl8qFud1cnNsTwkDVXLe/4iOkDDWzrOYhnL5htq38OoiDirxUKvJSaeoZ4qUDbdy/6Qg/e 0YN585n9suWEhhZuCLlKvAaEKPNMbA27 DZ E4T649JtwzmfBGTdpQn/4aBLfeCudy4qG XhhM9oWpUJKhO3Lv4TXmcjKoz8labidLWu gzs A4CizGRuOrOcDQtzuO vR/jF68d5aEsN164r5uYN5awry0L0j9YWWoceKap/BoMdsOtRaNsPWfNh7Y2QXjTpU7wGfrAnlXv3p3Jx4TD3n93DjtrOEAat5roj5e//2x1jqKz5Naft/28GkwrYvPY/ac9ed2Lz6EjRus5B7t90hCfeamBwxMvSgjSuXFXE5SsKWFGUgcOhyX0qU9Wha0KPBO4h P0n4NDzgMCya6DiXGvV9Uk0Djr4UnUGr7YmcOOCIe5a10eSE7Ye04SuQucdCd0vr2sH5 74IqmuZo6UXs/Opf EKzHvpKH/fS43f9zRyJM7G9l2vBNjIDM5nqr52awozmBpQTqVheksyEs90b9dpxfQhB653C5rlOfL34feBihYZa2ynpw96VP63cJPDiVz/4FUjIFvn9bHBxa4TmzXhK4igcM7TEnbyxR2bMXnSOBI2Q1UXvdlyJ4/4f5tfcO8cqiNrUc7ebO2i2PtA3h9Vm6KdwoVuaksLUhnyO1lXnoiBRlJ5KYlEDdu9aS5ntC1Dj0cOo9aMx9W/wwGWqHkdGsh3tyJZ6/zGtjRGccfapN4oiaJfo Dq0tdfGV1P6WpOnBIRR6fM5G6wstpy15P2lA9S2ofwdzzMM25Gzhe8h4a8i9kJOGdi5XfvKGc9663BsgNe7wcbRvgYEsfB5r7ONTaz57GHmo6BhktgjoEctMSKc5MojgrmeKsZHoG3WSmTL5mbqwLqIQuIlcA9wBO4CfGmP8ct138268CBoGPGWO2T3XMOVVCH qG5rfh2MvWKM/GtwCBxZfBOZ BBRfAmz/H44NWl4PmIQfNQ04O9jrZ2x3P1rZ4etwOEhyGa8pcfGTREOtyPBOeSkvoKtIcKX8/KUPNLKx/goUNfyBtqBGfOGnPWkN71toTP 98PRpj/WLzcdp7x mpXeY1j4XzT0umnpc9Ay5T xTmp3MyuIMFuWnUZaTQll2CmU5yRRkJJEY54j6BthZVbmIiBM4CFwO1APbgJuMMXvH7HMV8BmshL4BuMcYs2Gq49qW0I0B4wOf1xoKP3prfODzgWfIqqN2D1q3IwP 6OP X88w9acKF63/9b/e9sBa1VdEcABIhgEIw7rFsEUrMKHYHDg9oHX1QdD3Tj6G0noqyNpsAkAHw6a0lexN/1cXku5hDpPNj1Dbnpdbrp6euhwOfDxtz82wVCYOMLSNBfrMvpZkzHApUuypnw5NKGrSPPOhlMfuT17KGn9KwUdb5DTsxensZLxYOI8 lNK6U8pZSC5hIGkIkYSMhiJy2AkPgN3XBpeRwI R7z1I3H4HPEgDvqHPTT1DDEvPYk9jT3sbeyltnMQj d c0pQkKcg8R4B4lxDuIcDpwOwekQ4vy3C/OtOvsEp4P4OOs2Mc5BSkIcKQlOUhKd1u3o/RO31u J8Q6cYh3LceIW2/6RzLbK5UzgsDHmqP9gvwWuBfaO2eda4JfG u wRUSyRKTIGNM0y9hPtvdJqwFxNHljYxuAM8H/E/ 3392DeLyGVpfgwIeVxn04/b878OE4/gYODE58JOJjgGR6TQrN5NBgFnHYdwF7TAVv RbRN5xGel8cmSlxZCS5yEyOZ2FeGlkpbcxL8jE00EtOgoeceA FiSMkOcPTxqFUUIiDjqzVdGRZ0 46vCNk9 4jr3sn2X0HSB1soKDjDVJcLUiAn20fDvAXsJzv/g7cfDsAHq P5l4XdZ1D1HUN0tY3zBvHOhn2eBl2 xj2 PD6DF6fwePzMeS27h9s6cft9THi8eH2WvsNe6z7s7p0sf6hOBzCbecv5AvvrpzV8SYSSEIvAerG3K/HKoVPt08J8I6ELiK3Abf57/aLyIFJzpkHtAcQW4TqGv9AlF/PhGLtmmLteiBirukLdh1o uu56x Bf7TrfEHzRf8Pp/YeTdyyTGAJfaLvCeP/dQayD8aYB4AHpj2hSPVkXymiUaxdD8TeNcXa9UDsXVOsXQ/Yf02BTINWD4xdCr4UaDyFfZRSSgVRIAl9G7BERBaISAJwI/DkuH2eBD4ilrOAnqDUnyullJrUtFUuxhiPiNwBPIfVbfFBY8weEbndv/1 YCNWD5fDWN0WPz7LuKatlokysXY9EHvXFGvXA7F3TbF2PWDzNYVtpKhSSil76VIiSikVIzShK6VUjIiIhC4i7xeRPSLiE5FJu/CIyHER2SUiO0QkYucNmMH1XCEiB0TkfXhGDgAAAtRJREFUsIjcGcoYZ0pEckTkzyJyyH874Qxikf4eTfea xv2f jf/raIrA9HnDMRwDVdJCI9/vdkh4h8MxxxBkpEHhSRVhHZPcn2qHqPArge 94fY0zYf4DlQCXwElA1xX7Hgbxwx2vH9WA1MB8BFgIJwE5gRbhjn Kavgfc6f/9TuC70fYeBfKaYzXuP4M1tuIsYGu447bhmi4Cngp3rDO4pguA9cDuSbZH23s03fXY9v5ERAndGLPPGDPZqNGoE D1nJhSwRgzAoxOqRCprgV 4f/9F8B1YYzlVAXymp YxsIYswXIEpHJVxkJv2j7O5qWMeZlYKpJiaLqPQrgemwTEQl9BgzwvIi86Z9GIJpNNl1CpCow/rEF/tt5k wXye9RIK95tL0vgcZ7tojsFJFnRGRlaEILmmh7jwJhy/sTsvnQReQFoHCCTV8zxvwxwMOca4xpFJF5wJ9FZL//v1/I2XA9AU2XEEpTXdMMDhMx79EEbJvGIoIEEu92YL4xpt8/M ofgCVBjyx4ou09mo5t70/IErox5jIbjtHov20VkSewvm6GJVnYcD0RN13CVNckIi2jM2j6v962TnKMiHmPJhCL01hMG68xpnfM7xtF5D4RyTPGRMDEXack2t6jKdn5/kRNlYuIpIpI ujvwLuACVuNo0QgUypEkieBj/p//yhw0reQKHiPYnEai2mvSUQKRazJuEXkTKzPfUfII7VPtL1HU7L1/Ql3C7C/lfd6rP 6w0AL8Jz/8WJgo//3hVgt DuBPVhVG2GP/VSvx3//KqzFQ45E8vX4Y80FXgQO W9zovE9mug1B24Hbvf/LsC9/u27mKLXVaT8BHBNd/jfj53AFuCccMc8zfX8Bmvqbbf/c3RrNL9HAVyPbe PDv1XSqkYETVVLkoppaamCV0ppWKEJnSllIoRmtCVUipGaEJXSqkYoQldKaVihCZ0pZSKEf8f2LLkyRCgqSEAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1 /AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy WH4yJAAAgAElEQVR4nO3dd3Qc5fXw8e9Vs2w125JtyZLcca S3KgG0zvGBUIzkPCSBBJKCCQkBAhJSAIh4ZcQQiBUE7AdCCX0Yqqb5Cb3blRcZNmWq2yV /4xI2stJFllV7PS3s85OtrdaXdmZ fOPDNzR1QVY4wxoSvM6wCMMcZ4yxKBMcaEOEsExhgT4iwRGGNMiLNEYIwxIc4SgTHGhLiQSAQi0ktEVEQivI6liojcLyIvNaJ/FZF gYzJKyLypIj8sp7ujVpW9YznORF5qLnjaQt8l6k/fx81xttDRPaLSHhzx uO7 h6IiITRCTfH NtYixtal1qNYlARDaLyCF3xdotIv8TkXSv4wo2LZX0/DkdVb1ZVX/tjtfTH7jxH1X9RlVjVbWivv5EZLqIfNmA8R1dT5qrLe9YNUWrSQSui1Q1FkgBtgP/53E8xrSIYDqa9YK/jiragkCsC60tEQCgqqXAbGBw1WcicoGILBaRvSKSJyL31zW8iFwvIqtEZJ IbBSR/ fTbYKI5IvInSKyQ0S2isj1Pt3bi8ijIrJFREpE5EsRae92GyciX4vIHhFZKiITfIbrLSKfudP8EEiqbx5F5C532oUickONbvXN6 fu/z3u0dN4EekrIp ISLGI7BSRGSLS0Wd8d4tIgRvbGhGZ6H4eJiL3iMgGd9iZItK5runUiDHaPYJLct//QkTKRSTeff QiPzZff2c z4GeBfo7o5zv4h0d0cZJSIvuDGuEJGsOpabiMhj7ndXIiLLRGRoLf3FicinIvK4O8xAEflQRHa5y2Cqz/e2R0TC3PdPi8gOn/G8JCK31RHLdHf9eESco9hNInKeT/fuIvKmO831IvI9n273i8hsd/x7gekiMsddTl 7y YtEUl0v8 9IrJQRHr5jOMv7vqxV0RyROSU2uKsEfMUEcmp8dmdIvLfOvqvc72WGkeN7vLY6Pa7SUSuEpFBwJPAeHee9rj9PicifxeRd0TkAHC61NIcIyI/d9fpzSJylc/nc0TkuzW/C/d11bq71J3mNPfzC0Vkift9fy0iw32GHyUii9zYXwWi61mG/dxlUuLG9qpPtyE 69l2Efm5 3k7EfmzOL/3Qvd1O7db1TbpbhHZBjwr9fw2xfntveR vsddL7rVFS8Aqtoq/oDNwJnu6w7A88ALPt0nAMNwkttwnCOGS91uvQAFItz3FwB9AQFOAw4CGT7jKQceBCKB893undzufwPmAKlAOHAi0M59X z2Hwac5b7v4g43F/iT2 pwD7gpTrm9Vw3/qFADPCyG3 /xs6r 1k/N552QBecjfif3W4DgDygu8/wfd3XtwHzgDR32H8A/65rOrXMx fA5e7rD4ANwHk 3S5zXz8HPOQzb/k1xnM/UOou23Dgd8C8OqZ5DpADdHS/30FAiu90gERggc80Y9xlcD0QAWQAO4EhbvdvgEz39RpgIzDIp9uoOmKZDpQB33Pj/j5QCIjb/TPgCZyNykigCJjoM89lwKXu99weZ71bj7PuJgArgbXAmW7cLwDP kz/andeI4A7gW1AtM/4X6r5Xbrf866q XO7L676HmuZxzrX6xrjjQH2AgPcbik y3c68GWN8T4HlAAnufMfzbfXk3KfaZ8GHPAZ/xzguzW iy993h/9PbnvM4AdwFj3u7oOZ5vTDogCtgC342wTJrvfzUN1LJN/A/f6xH2y 3kcsNX9LqLd92Pdbg/i/Na64vxGvwZ XWNef /G0576f5v/D3gLZzsZDmQC8fVuX73ewDf0z/1S9gN73IVSCAyrp/8/A481ZKMF/Bf4sc9CP8SxG9IdwDj3iz0EjKhlHHcDL9b47H13herhxhzj0 1l6k4E/wIe9nnfv aK29R5dfu5FFjsvu7nzt ZQGSN/lbhbph8frxlOD/shkzn18Djbv/bgB8DD7s/gkNAks P/niJ4COf94OBQ3VM8wycjeM4IKxGt fcZbscuMvn82nAFzX6/QfwK/f1i8AdQDJOIvgDcDPQ210fw qIZTqw3ud9B3eZJQPpQAUQ59P9d8BzPvP8eY3xzQHu9Xn/KPCuz/uLgCX1fB 7cddd6kgE7vu/A79xXw9xh2tXy/jqXa/5diLYA1wOtK9lOdWWCF6o5bOaicB32jOBX/osq8Ykgr/jbnh9PluDk2BOxSeBu92 pu5E8ALwFJBW4/MrcX93tQyzATjf5/05wGafeT2Cm8Qb8Nu8wY1veF3rQs2/1tY0dKmqdsTJgLcAn4lIMoCIjBXnUL9IREpwfqi1Nr IyHkiMs89PNuDs6fp22 xqpb7vD8IxLr9RON8aTX1BKa4h2J73PGejPMFdQd2q oBn/631DOf3XH2UGvttzHz6vbfVUReEaf5Zy/wUlX/qroeZ /ifmCH219Vc0xP4HWf VmFs/Gq/zCz2mc4K3EGkAt8iPPDGoezgdzZwPGAk0iqHASipZa2UlX9BPgrzpHbdhF5StzmKNcFOHtUT/p81hMYW O7uwpng 07H6fiHMnMcefjNJwEUikip0h1c9aK2uJW1YPuy1ic73iXqu7z6XcLzpFlFd91oMp2n9eHankfW/XGbdJZ5TZR7ME5iqi3SdL1PPAdERHgGmCmqh6upb8Gr9duP9Nw1tWt4lzsMfA4cdQ2/75qm3b3uno jp7AnTXWgXR3fN2BAnW3uD7TqstPcY5GF4jTjFnVtJtO7dsO3Gn4jrPmvBSp0yTuG29dv80XcXZCX3Gbmf4gIpH1xNvqEgEAqlqhqq/hzPjJ7scvA28C6aqagPNDl5rDuu1u/wEeAbq5ieWd2vqtxU6cJoq tXTLwzki6OjzF6OqD McDnYSpw28So96prMVZ6Wpq9/65lX5tt 5nw9X1XicJoOj86uqL6vqyTgrl IcglbN03k15ilaVQvqmE5NX M0PV0GfKaqK915uQBn41qbhoy3Xqr6uKpm4uzN9gfu8un8T A94B2f7yPPjc93PmNV9ftu98 AU3CSwWfAlzhNFqdVzYeqfuEOE6uqQxoQZiHQWUTifD7rART4zkrD5/pY4pwPuBuYitOs2RGnqeW467mqzsPZAz0F A7OhqU2jVqvVfV9VT0LZ doNc53AXXP5/Hmv7ZpF7qvD AcgVVJpn55OEdBvutAB1X9N858prqJ0XdatQetuk1Vv6eq3XGaaZ4Q5wqlPGrfduDG3bOOeYFvL4s6f5uqWqaqD6jqYJym6wuBa ub VaZCMRxCdAJJxOC0962S1VLRWQMzgpcmyicI4oioFyck3dnN2S6qlqJ07TwJ3FO9IWLczK2Hc5e9kUico77ebR7kidNVbcA2cADIhIlIifjHMbXZSbOycHBItIB FWN7vXNaxFQCfSp0f9 nBO7qfhsGEVkgIic4c5DKc5eZdXlfk8CvxGRnm6/XdzlXtd0ai6vgzjt9T kesP/Nc6Po65EsB1IFJGEusZbHxEZ7R4xReJsDEp95qfKLTiH/W Lc6L/baC/iFwjIpHu32hxTmSiqutwlsvVOM01e904L69nPuqlqnk4y J37royHLgRmNGU8dUiDqfppAiIEJH7gPj6BznGCzhHVuWqWuulnY1Zr0Wkm4hc7G64D Osj1Xfy3YgTUSiGhFflappn4KzwZvlfr4EmCQiHdyN8I01htvOsevuP4Gb3XVHRCRGnIsy4nDOg5QDPxKRCBGZBIypKyBxTrinuW9342zEK3DWs2QRuU2ck8NxIjLW7e/fwC/c31gScB/ONqUudf42ReR0ERkmzpVWe3GajOq9hLe1JYK3RGQ/zsz9BrhOVasOw38APCgi 3AW4szaRuAeiv/I7b4bZyP6ZiNi AlOM8dCnJNqv8dpI84DLgF jvPjy8PZ4FYt4 /gnIjahbNhf6GuCajquzjt/p/gnBz8pEYvdc6ru/H9DfCVe9g4DngAp3mmBPgf8JrPuNrhtNvvxGnG6OrOA8BfcJbNB 605rnzUNd0avMZzgm2BT7v46i 6qjmvK/G VFsdMfb2EP9eJwf9W6cw tinKM/32kocBPOd/QGzg/lbOAKnL2wbVSfmPOdj2JV/cbnveCcSG2qK3Ha0QuB13HOSXzYjPH5eh/nCqy1OMuhlOM3tfh6EedihbqOBqo0dL0OwzlJWuj2exrOegzO r0C2CYijW0u3O2OcwZws7v ADyGc1SzHaepq2aCvR943l3HpqpqNs5J/b 641yPc14BVT0CTHLf78Zp4nqNuo0G5rvbqjdxzj9ucrc9Z Eky23AOuB0d5iHcJLqMpztyyL3s7rU dvEOfqZjbOdXIWzrtZ7Q2bV1QvGGHOUe6S0A dqunVex2MCq7UdERhjWsb3gYWWBEJDSN taIz5NhHZjNPsdanHoZgWYk1DxhgT4qxpyBhjQlyrahpKSkrSXr16eR2GMca0Kjk5OTtVtUtd3VtVIujVqxfZ2dleh2GMMa2KiNR3J7Q1DRljTKizRGCMMSHOEoExxoS4VnWOwBgTGsrKysjPz6e0tPT4PZujoqOjSUtLIzKy3mKj32KJwBgTdPLz84mLi6NXr14cW/TT1EVVKS4uJj8/n969ezdqWGsaMsYEndLSUhITEy0JNIKIkJiY2KSjKEsExpigZEmg8Zq6zEIiEXyxrogn5qz3OgxjjAlKIZEIvly3kz99sJaifbU9bc8YY/zr/PPPZ8 ePfX2ExsbW vn06dPZ/bs2YEIq04hkQimZKVTXqm8vjjf61CMMW2YqlJZWck777xDx44dvQ6nwUIiEfTrGktmz07MzM7Hqq0aY47n7rvv5oknnjj6/v777 eBBx5g4sSJZGRkMGzYMN544w0ANm/ezKBBg/jBD35ARkYGeXl59OrVi507nYetXXrppWRmZjJkyBCeeuqpY6Zz5513kpGRwcSJEykqKvpWHDk5OZx22mlkZmZyzjnnsHXr1sDMsKp69gd0xHmk2mqcR6qNr6//zMxMbapXFmzRnne/rTlbdjV5HMaYlrFy5UpPp79o0SI99dRTj74fNGiQbtmyRUtKSlRVtaioSPv27auVlZW6adMmFRGdO3fu0f579uypRUVFqqpaXFysqqoHDx7UIUOG6M6dO1VVFdCXXnpJVVUfeOAB/eEPf6iqqtddd53OmjVLjxw5ouPHj9cdO3aoquorr7yi119//XFjr23ZAdlaz7bV6/sI/gK8p6qT3QdXdwjUhC4Y3p0H3lrJzIV5ZPToFKjJGGPagFGjRrFjxw4KCwspKiqiU6dOpKSkcPvtt/P5558TFhZGQUEB27dvB6Bnz56MG1f7Y7sff/xxXn/9dQDy8vJYt24diYmJhIWFMW3aNACuvvpqJk2adMxwa9asYfny5Zx11lkAVFRUkJKSEpD59SwRiEg8cCrHPiD6SKCmF9sugguGpfDW0kLuu2gwHaK8zoHGmGA2efJkZs ezbZt27jiiiuYMWMGRUVF5OTkEBkZSa9evY5esx8TE1PrOObMmcNHH33E3Llz6dChAxMmTKjzOv al36qKkOGDGHu3Ln nbFaeHmOoA9QBDwrIotF5GkR dbSFJGbRCRbRLJra0NrjKmj0zlwpIL/LQtQO5sxps244ooreOWVV5g9ezaTJ0 mpKSErl27EhkZyaeffsqWLfVWdgagpKSETp060aFDB1avXs28efOOdqusrDx6ddDLL7/MySeffMywAwYMoKio6GgiKCsrY8WKFX6cw2peJoIIIAP4u6qOAg4A99TsSVWfUtUsVc3q0qXO5yo0SFbPTvRJimFWtl09ZIyp35AhQ9i3bx pqamkpKRw1VVXkZ2dTVZWFjNmzGDgwIHHHce5555LeXk5w4cP55e//OUxzUcxMTGsWLGCzMxMPvnkE 67775jho2KimL27NncfffdjBgxgpEjR/L111/7fT7Bw2cWi0gyME9Ve7nvTwHuUdUL6homKytLm/tgmr/P2cDv31vNJ3eeRp8utV/Ha4zx1qpVqxg0aJDXYbRKtS07EclR1ay6hvHsiEBVtwF5IjLA/WgisDLQ0708I5XwMGFWjh0VGGMMeH8fwa3ADBFZBowEfhvoCXaNj b0AV34T04 5RWVgZ6cMcYEPU8Tgaoucdv/h6vqpaq6uyWmOyUrnR37DvP5uuadfDbGmLbA6yMCT5wxsCtJsVG8ujDP61CMMcZzIZkIIsPDmJSRxserdrBzvxWiM8aEtpBMBABTMtOcQnSLCrwOxRhjPBWyieCEbnGM6tGRmdl5VojOGBPSQjYRAEzLSmfdjv0syau/brgxJvRUPS9g8 bNDB06tMHDbd68mZdffjlQYQVESCeCC4an0D4ynJnZdtLYGNM45eXltX5eXyKoaxivhXTltbjoSC4YnsJbS7fyywutEJ0xweiBt1awsnCvX8c5uHs8v7poSKOHe 655/jf//5HaWkpBw4c4JNPPvlWP/fccw rVq1i5MiRXHfddXTq1OmYYe677z4eeeQR3n77bQBuueUWsrKymD59Ojk5Odxxxx3s37 fpKQknnvuuYBVHPUV0kcEAFOz0tl/uJx3crd5HYoxphWYO3cuzz//fK1JAODhhx/mlFNOYcmSJdx 0NGgaconK33nors2fPJicnhxtuuIF77703IPNQU8jvAo/u1YneSTHMzM5jcmaa1 EYY2poyp57IJ111ll07tzZ78O05PMHagr5RCAiTMlK4w/vrWHTzgP0Tqq9rrgxxkDdzx5o6DARERFUVlaXt6l6PkFLPn gppBvGgK4PCONMIFZdtLYGNNMcXFx7Nu3r87uPXv2ZOXKlRw fJiSkhI /vhjoGWfP1CTJQKgW3w0EwZ05T LrBCdMaZ5hg8fTkREBCNGjOCxxx77Vvf09HSmTp3K8OHDueqqqxg1ahTQss8fqMmz5xE0hT eR1CX95Zv4 aXcnh2 mhOH9g1INMwxjSMPY g6VrV8wiCzRkDu5IYY4XojDGhJ RPFleJighjUkYqz361meL9h0mMbed1SMaYIJabm8s111xzzGft2rVj/vz5HkXUdJYIfEzJSuefX2zi9cUFfPeUPl6HY4wJYsOGDWPJkiVeh EX1jTko3 3OEamd TVhVaIzhgTOiwR1DBttFOIbml idehGGNMi7BEUMOFw1OIjgyzk8bGmJBhiaCGuOhIzh WwltLCzl0pMLrcIwxJuAsEdRimluI7t3lW70OxRjjkaY j8DfnnvuOW655ZaATsMSQS3G9O5Mr8QO1jxkjKlTc58tUFERPC0Onl8 KiLhQDZQoKoXeh0PVBWiS eP769h884D9LJCdMZ45917YFuuf8eZPAzOe7jRgzXkeQRz5szhvvvuIzExkTVr1nDqqafyxBNPEBYWRmxsLHfccQfvv/8 jz76KJs3b bxxx/nyJEjjB07lieeeILw8HCeffZZfve735GSkkL//v1p1865r2nWrFk88MADhIeHk5CQwOeff97sRQHBcUTwY2CV10HUdLQQXY4dFRhjqjXk2QILFizg0UcfJTc3lw0bNvDaa68BcODAAYYOHcr8 fNJTEzk1Vdf5auvvmLJkiWEh4czY8YMtm7dyq9 9Su uorPvzwQ1auXHl0vA8 CDvv/8 S5cu5c033/TbPHl6RCAiacAFwG AO7yMpabkhGhO69 F2Tn53HHWAMLDxOuQjAlNTdhzD6SGPFtgzJgx9Onj3JR65ZVX8uWXXzJ58mTCw8O5/PLLAfj444/Jyclh9OjRABw6dIiuXbsyf/58JkyYQJcuXQCYNm0aa9euBeCkk05i vTpTJ06lUmTJvltnrw Ivgz8FOgzpKfInKTiGSLSHZRUVHLRYZzT8H2vYf5fF3LTtcYE7wa8jwCEan1fXR0NOHh4YDz/IHrrruOJUuWsGTJEtasWcP9999f6/BVnnzySR566CHy8vIYOXIkxcXFzZiTap4lAhG5ENihqjn19aeqT6lqlqpmVWXIlnLGwG50jolipp00NsY0woIFC9i0aROVlZW8 uqrnHzyyd/qZ LEicyePZsdO3YAsGvXLrZs2cLYsWOZM2cOxcXFlJWVMWvWrKPDbNiwgbFjx/Lggw SlJREXp5/tk1eNg2dBFwsIucD0UC8iLykqld7GNMxoiLCuGxUKi/MtUJ0xpiGGz9 PPfccw 5ubmceuqpXHbZZd/qZ/DgwTz00EOcffbZVFZWEhkZyd/ 9jfGjRvH/fffz/jx40lJSSEjI PoFUZ33XUX69atQ1WZOHEiI0aM8Eu8QfE8AhGZAPzkeFcNBfJ5BHVZs20f5/z5c3554WBuPLl3i07bmFDVmp9HMGfOHB555BHefvttT6ZvzyMIgAHJcYxI78hMK0RnjGmjPL PAEBV5wBzPA6jTlOz0rj39eUsyy9hRHpHr8MxxgSB p5HMGHCBG CaqKgSATB7qIR3fn12yt5NTvPEoExLURV67x6JhgE4/MImtpqYU1DDRAfHcn5Q1N4a4kVojOmJURHR1NcXGzNsY2gqhQXFxMdHd3oYe2IoIGmjk7ntcUFvLdiK5eNSvM6HGPatLS0NPLz82npe4dau joaNLSGr99skTQQGN7d6anW4jOEoExgRUZGUnv3naVXkuxpqEGEhGmZKYxb MuthQf8DocY4zxG0sEjXB5plOIbnZOvtehGGOM31giaISUhPac6haiq6i0k1jGmLbBEkEjTc1KZ2tJKV9YITpjTBthiaCRzhzkFqLLtkJ0xpi2wRJBI0VFhHHpyFQ XLmdXQeOeB2OMcY0myWCJpg2Op2yCuW/iwu8DsUYY5rNEkETDEiOY0RaAjOzrRCdMab1s0TQRFOy0lm9bR 5BSVeh2KMMc1iiaCJLh7ZnXYRYbw0b4vXoRhjTLNYImii OhIrhzTg9k5 azautfrcIwxpsksETTDbWeeQHz7SH799ko7V2CMabUsETRDxw5R3H5mf77eUMwHK7d7HY4xxjSJJYJmumpsD/p3i W376zicLk9q8AY0/pYImimiPAwfnnhYLYUH TZrzZ7HY4xxjSaJQI/OOWELpw5qCt//WQ9RfsOex2OMcY0iiUCP7n3gsEcLq/gkffXeB2KMcY0iiUCP mdFMP0E3sxMyeP5XaTmTGmFfEsEYhIuoh8KiKrRGSFiPzYq1j85daJJ9C5QxQPvmWXkxpj/EjV QsQL48IyoE7VXUQMA74oYgM9jCeZouPjuTOswewYPMu3snd5nU4xpjW6tBuWP8RfPYHmDEV/tgP8hcGbHKePbxeVbcCW93X 0RkFZAKrPQqJn YNjqdF dt4bfvrGLioK5ER4Z7HZIxJpiVH4Zty6EgGwpyID8bdm1wOwp0GQD9z4XIDgELwbNE4EtEegGjgPm1dLsJuAmgR48eLRpXU4SHCfddOJgr/zmPp7/YyC1nnOB1SMaYYKEKuzY6G/uqDf 2XKhwn20SmwxpWTDqakjNhO6jIDo 4GF5nghEJBb4D3Cbqn6raI qPgU8BZCVldUqGt7H903k3CHJ/O3TDUzOTCc5IdrrkIwxXjiws3ovvyDH Svd43SLjIHUDBj3fUjNcjb8CamehOlpIhCRSJwkMENVX/MyFn/7 fmD GT1Dv7w3mr NG2k1 EYYwKt7BBsXXZsE88etzqxhEHXITD4EmePPzUTugyEsOBoOvYsEYiIAM8Aq1T1T17FESg9Ejtw4ym9 fucDVwzviejenTyOiRjjL9UVsLOte5evrvh374CKsud7gnpzt7 6O86G/6UERAV423M9RCvLnMUkZOBL4BcoNL9 Oeq k5dw2RlZWl2dnZLhOcX w Xc/ojc0jr1J7Xvn8iTu4zxrQ6 7b5NO9kQ8FiOLLP6dYu3tnop2a6f1kQ183beGsQkRxVzaqru5dXDX0JtOktY2y7CO46ZwA/nb2MN5YUcukob9r/jDGNcHg/bF1ybLv Xvf55GER0G0ojJhWvdFP7AdhrfveXM9PFrd1kzPSeHHuFh5 dzVnD lGhyhb5MYEjYpyKFrlc0J3kfNe3UaKTr2gx3hno5 WBcnDILK9pyEHgm2VAiwsTLjvosFMeXIuT362kTvO6u91SMaEJlUoyfc5mZvj7PmXHXS6t /kbPAHXVTdzBOT6G3MLcQSQQsY3aszFw5P4R fbWDa6HRSO7a9PQoT2lSV3QfL6NQhMnjOhZWWOHv4Vc07 dlwYIfTLTwKkodDxrXVG/3OfSBYYm9hlghayM/OH8SHK7fz8Lur b8rR3kdjjFNpqoUlpSSm7 H3IISluWXsLyghN0Hy0iKjWJsn0TG90lkfN9E iTFtExiKD8CO1ZUN 8UZDtX9VRJ7Ad9z3Av3cyAbsMgIirwcbUSlghaSGrH9vy/U/vw CfruW58T7J6dfY6JGOOS1XZtrf06Ma 6n/xAedO2IgwoX 3OM4enEyfLjGs3raPuRuK d yrQB0jWvHODcpjO TSM/EDs1PDKqwe/OxN2ptXQoV7rNAOiQ5G/xhU92reTKcZh9TJ88uH22K1nb5aE0Hj5RzxiOf0SWuHW/88CTCwkLzMNQEr 3uRj 3oOToHv/O/c5GPzxMOKFrLMNSExielsDQ1AQGpcR/q56WqrK5 CBzNxQzb2MxczcWH31gU0pCtJMY3OSQ3rkB9XMO7qrey69q5jlY7HSLaA/dR/pcupkJHXuEbBNPXY53 aglghb238UF3PbqEv44eThTstK9DseEsB17S49p2llWUHJ0gx0mcELXOIalJTAsNYFhaQkMrmWj3xCqyoaiA8zd6CSGeRuKjx5RpHZsz/i iUePGlJjBLYvP/aa/V0b3TGJczduaiakuRv9roMhPNJfi6TNskQQZFSVSX//mvzdh/j0JxOIbWetc6ZllFdU8tnaIl5bXED25l1s31u90e/bJZZhaQkMdzf6g1LiA3aps6qybsd 5q4vYtOapZTnZXNC2RpGhG1gSN/fRDEAACAASURBVNg3ROLcnVsRk0x4elb1pZspI1ukAFtbFLQ3lIUqEeFXFw3h0r99xROfruen5w70OiTTxq3fsY9Z2fm8triAon2HSYyJ4pQTkhie1vHonn5MS yQ7C CghykIJv dn0L1zkXNkDVLSPYUfsID6qHMOHJWl8VdqL7aWd6S0xnBHblbvGDbCS7gFkicADI9M7MmlUKk9/uYkrx/RoWDupMY1QcqiMt5cVMis7nyV5e4gIE04f2JXJmWmcPqArUREBvhP2yEHnBK5vLZ493zjdJBy6DYYhlx2tuhneZQApYeGkAGdXKqu27nXOL2wo5l9fbSK3oIRnrssiLtqagQLBmoY8sq2klNMfmcOEAV34 9WZXodj2oDKSuWrDTuZlZ3P yu2cbi8kgHd4piSlcYlI1PpEtcuQBOuqC7AVlVnf/tK0Aqne0IP58qdtCxnw58yvFEF2N5cWsgdry5hUEo8z98whs4xdtlnY1nTUJBKTojmBxP68uiHa5m3sZhxfULjDkbjf1uKDzA7J5//5ORTWFJKfHQEU7PSmZKVxrDUBP9fx79367GllguX BRgS3A2 qfcUX0VT2zXZk3u4hHdiW0XzvdfWsTUf8zlpRvH2jM /MyOCDxUWlbBxEc/I759JG/fejLhdjmpaaADh8t5J3crs3LyWbBpF2ECp5zQhSlZaZw5qJv/2tMP74fCxceWZdhX6HQLi4TkodUPVUnNDGgBtnkbi/nu89l07BDJSzeOpVdS8JZ1DjZ21VCQe3tZIbe8vJjfTRrGlWOC/1GcxjuqyoJNu5iVk887uVs5eKSC3kkxTM5M4/KMtObvJVcVYPOtulm02qcAW /q5p3UTLcAW8vumefml3Dtv YTER7GizeOYWCyXUXUEJYIgpyqMu0f89hQtJ9P75pAvJ0MMzUU7jnEf3Lymb0ony3FB4ltF8GFw1OYnJlGZs9OTWv68S3AVlWW4ZgCbJ2rL9us2tvvEBx3w6/bvo rn5lPaVklz10/2h761ADNTgQi0g34LdBdVc8TkcHAeFV9xr hHl9bTAQAywtKuOivX/K9U/rw8/MHeR2OCQJHyit5f8U2Zmbn8eX6najC D6JTMlK49yhyY2/xv/QHp8mnkU1CrC1c56gdXTDn Hs/Qfx3bl5uw5y9TPzKdp3mH9em8VJ/ZK8Dimo SMRvAs8C9yrqiNEJAJYrKrD/Bvq8bXVRADw09lLeX1xAR/cfhq9re0zZOXtOsi/F3zDzOw8du4/QmrH9kzOTGNyZlrDLzMuP LcnVvVvFOQU6MA2wnH7ul3G9oqC7Dt2FvKNc8sYNPOA/z1O6M4e0iy1yEFLX8kgoWqOlpEFqvqKPezJara4k9kb8uJYMe Us545DPG9Unk6evq/L5MG1ReUcmna4qYMX8Ln60tQoAzB3XjqnE9OaVfUv01qVRh9ybnJG7VNftbl1UXYIvp4rTpp7lP0 o Ctp3bJH5agl7Dh5h rMLyS0o4Y ThzMpI83rkIKSPy4fPSAiiYC6IxwHlPgpPuPqGhfND0/vx /fW82X63Zy8gl2qNvWbd9byisL8nhl4TdsLSmlW3w7fnTGCVwxJp2UhDqeWXGgGAoXHXtC99Aup1tkB6cMw5jvVe/xJ6QHdRNPc3XsEMWM747lphezuWPmUvaVlnPdib28DqvVacgRQQbwf8BQYDnQBZisqssCH96x2vIRAcDh8grO tPnREeG8c6PTiEivHU/B9V8W9VNXzPmfcOHq7ZTUamc2r8LV43twcSBXY/9zstKYduyY8st797kdhToOqi6eSctC7oMgvDQvDWotKyCW/ 9mA9XbucnZ/fnh6f3C54H5AQBv1w15J4XGIDzsPk1qlrmvxAbrq0nAoD3lm/j5pdymH5iL 67cLCVqm4jdh04wqzsPF5e8A1big/SOSaKKVlpfGdMD3omxkBlJRSvP/ZGre3LodIpwEZc9 qKm6lZTunldnHezlSQKa o5Kezl/Ha4gJuOrUPPztvoCUDV7ObhkTk2hofZYgIqvpCs6Mz33LOkG7ceHJvnvlyE/sPl/PwpGF2ZNBKqSrZW3YzY94W3sndxpGKSsb07swdZ/Xn3F5htNu2GJbMdjf i Gw2 IaFeu05Z94a/Uef3x3b2emFYgID ORKSOIi47gqc83svdQGb 5bJjdqNkADTmOHO3zOhqYCCwCmp0IRORc4C9AOPC0qj7c3HG2diLCLy4YRHx0JI99tJb9peX85cqRtIuwyoutxd7SMl5fVMCM VtYu30/XaIruGfIPi5K3EqXklz4NAdK8pyeqwqwDZ1U3cST1B/C7PtuirAw4f6Lh5DQPpLHP1nPvsPlPDZ1ZOCL7LVyx00Eqnqr73sRSQBebO6ERSQc BtwFpAPLBSRN1V1ZXPH3dqJCD8 8wTioiN48O2VfPf5bP5xTWbA6sMb/8jNL HleRtZsXQhAyvXckdcHmO7bqLjvvXIWp8CbGlZMPZmZ8OfMgKirPqsP4kId5w9gLjoSH7zzir2l5bz5NWZtI y5FqXpmxZDgIn GHaY4D1qroRQEReAS4BQj4RVLnh5N7Et4/kp7OXcvXT83l2 hgSOtidx8HkUPE35Hz1EdtWfUXq/pX8ImwjMeGlzjGuJkBSBoy82G8F2EzDfe/UPsS3j Bnr Vy7b/m88z00Xbnfh0aco7gLdxLR4EwYDAw0w/TTgXyfN7nA2Nrmf5NwE0APXqEXi2eyZlpxLYL50f/XsK0p by4o1jA1dO2NTv8D7n7tz8bPZtnI/mZxNftpOTgTIiKOk0gMh V0HPMc5Gv3PfgBVgMw0zbXQPYttFcturi7nyqXm8cMMYEmPt91NTQy4fPc3nbTmwRVXzmz1hkSnAOar6Xff9NcCYmk1RvkLhqqG6fLGuiJteyCE5IZoXbxxDWidrTgioinLYsdKtxeNcr69FqxF3n2hTZTdy6Ud5cgaDsk5n4KgTkcg6rv03npuzZgc3v5RD947teenGsXTvGFrfVdAWnROR8cD9qnqO /5nAKr6u7qGCeVEAJCzZTfXP7uAmHYRvHjjWPp1jfU6pLZB1Xl6lm9JhsIlUH4IgIroTmyKHsRHJWnMPdybXR2HcNG4oUzOTLeHpLQiCzfv4oZnFxLfPpKXvjs2pEq5NDkRiMg qpuEjukEqKo2q/6re2/CWpyrkAqAhcB3VHVFXcOEeiIAWFm4l2v/NR9VeP6GMQxNTfA6pNbn0B53g7 o rr9A0VON7cAW2VqJrnaj fzknhtUwThYWGcNagbV4/ryYl9E 3 jlZqeUEJ1/1rASLCCzeMYXD30ChjHbRHBAAicj7wZ5xTa/9S1d/U178lAsemnQe4 un57D1UxjPTRzOmd3CUBw5K5Udge251xc2CHCheV909aYB72aZzMndrdF9eydnGKwu/Yfvew6QkRHPlmB5MG51Ot3h7KlZbsKFoP1c/PR8BPr5zQkhcTeS3RCAiXXHuIwBAVb9pfniNY4mgWuGeQ1z9zHwK9xziyaszmTDArkZBFXZtrG7eyc92SjRUHHG6x3Y7tiRD91EQnUBlpfL5uiJmzP Gj1dtR4HT nfh6rE9mTCgi93Q1wYt2LSLqf Yy21nnsBtZ/b3OpyA80f10YuBR4HuwA6gJ7BKVYf4M9CGsERwrOL9h7n2XwtYu30ff542iguGp3gdUss6UOzTru/u7R/a7XSL7OBs6H03/PGpxxRg27n/MLOy83l5wRbydh0iKTaKqVnpXDmmR8NLPptW64czFvHx6u18cueENn/y2B JYClwBvCRqo4SkdOBK1X1Jv GenyWCL5tb2kZNz63kJwtu/ntZcO4oq0 7rKqANvRqpvZsHuz003CnIJrvrV4ugystQCbqjJ/0y5mzP G95ZvpaxCGd8nkavG9eDswcl2B2oIydt1kIl/ ozzhibzlytGeR1OQPmjDHWZqhaLSJiIhKnqpyLyez/GaJohPjqSF24Yy80v5XDPa7nsKy3ne6f28Tqs5jleAbb4VGeDn3WDe3fuSGhX/xVUO/aV8vqiAmZm57Gh6ADx0RFcM64X3xnbw66 ClHpnTtw0yl9 Oun67l2fC8ye4buIy8bkgj2iEgs8AUwQ0R24NxPYIJE 6hw/nltFrfPXMJv3llFyaEy7jy7f upvLhv 7HNO8cUYIuD1FFw4o98CrA1rAnsSHklH6/azuycfOasLaKiUsns2YlHpvTjwuEpREe2/ZOEpn7fn9CXmdl5PPjWCl7/wUkhezVYQxLB50BH4MfA1UAC8GAggzKNFxURxuNXjCKuXQR//XQ9e0vLuP iIcG3Yh854Fyjf3TDv6hGAbYhMOxyp3knNdMtwNa45poVhSXMys7njSUF7D5YRrf4dtx0ah8mZ6bRt4vt/ZtqMe0iuPvcgdw5y3lU7OWZofmEs4YkAgHeB3YBrwCvqmpxQKMyTRIeJvxu0jDioiP45xeb2Fdazh8nD/fuqpfKCihafezTtHasBK10unfsCWmjYdz3qwuwNfHu3F0HjvDfxQXMzsln5da9RIWHcdaQbkzJTOOUE7pYKWJTp8tGpfLCvC38/r3VnDs0mZh2oVfcsTGXjw4HpgGXA/mqemYgA6uNnSxuGFXlb5 u55EP1nLW4G7835WjAt8Mogp7C3yeprXIqctTdsDpHt2xxqWbGRDbpVmTLK o5LO1RczKzufj1dspq1CGpSYwJSuNi0d0p2MHu vXNEzOlt1c/vevueX0fvzknAFeh N3/jhZXGUHsA0oBuyi9SAmItxyxgnEt4/kvjdWcMNzC3nq2ixi/bmnU7rXeXZuQU71g9P3b3O6hUdB8jAYdVV1E09iX789O3f9jn3Mys7ntcUFFO07TGJMFNeO78WUrDQGJofGnaLGvzJ7duKSkd156ouNTBudHnKXDzek uj3cY4EugCzge/ZMwNah2vH9yK2XQR3zV7G1U/P57nrRzdtL7miDLavOPZGrZ1rOVqBpHNf6HNa9aWbyUMhwr8VHksOlfHW0kJm5eSzNG8PEWHC6QO7MjkzjTMGdiXSbvoyzXTPeQP5YMV2Hn53NX 7KsPrcFpUQ3YRewK3qeqSQAdj/G9SRhqx7SK45eXFTPr710zJTGd830SGdo v/dyBKuzZUt28U5ANW5dCeanTvUOis7Eferlz3X73DOgQmBIXFZXK1xt2Mis7n/dXbONweSUDusXxiwsGccnIVCvHbfwqJaE9N5/Wl8c Wss1G4sZ1yfR65BajKe1hhrLzhE03dfrd3L/WytYu30/ALHtIhjdqxOn9YjktJg8epauIqxqj//gTmegiGjnBG5qFqRmOG37HXv6rYmnJlXlm10HWZZfwtK8PbyTu5XCklLioyO4ZGQqU7LSGJaa0HouizWtzqEjFUx8dA4dO0Tx1q0nt5mLDIK66FxjWSJopvLD7N64iPzlX1Ket5CkPbmkayEAlQjbItPZnzSS2L5jSR50EmHJQyE8ME90UlXydh0it6CEZQV7WF5QQm5 CXtLnVtUosLDGNc3kSmZaZw1uJtd829azJtLC/nRvxfz8KS2c6e JYJQVVWAzbckw7bcGgXYstjXZQTLtC8f7unOnM2H2Vx8EICE9pGM7d2Z8X0TGd83kf5d45p8T4Kqkr/b2ejnuhv83IISSg6VARAZLgxMjmdYWgLDUxMYmppA/25xVu7BeEJVmfLkXDYXH DTn0wgrg083tISQag4sNPn0k23iad0j9PtaAG2DKeZp5YCbFUK9xxi3sZi5m0sZu7GYvJ2OQ9n6RwTVZ0Y iTSr2tsrU00qkphSSm5 Xucvf38EpYXlLD7oLPRjwgTBqbEMSw1gWGpHRmWmkD/5FjaRdgevwkey/L3cPFfv L/ndqHn50/yOtwms0SQVtUdgi2Lju2Fs eLU43CYOug6s3 qmZdRZga4j83QeZu8FJCvM2FFNY4pw0ToqNYmwfJykkxbZjRaGz0c8tKGHXAeeoIyJM6N/N3einJTA8LYEByXG20Tetwk9mLeWNJQV8ePtp9GrlTzOzRNDaVVY6D1LJz67e8G9f4VOALe3YqpspI45bgK2pqtr1527ceTQ5bN97GHDuaj6hayzD0xLcDX9HBibHWdu abV27C3l9EfmcGK/JP55bZ3b0FbBnzeUmZawb9uxTTyFi HwXqdbu3inieekH1ffpRuX3GKhiQg9EjvQI7EH00b3QFXZXHyQkkNlttE3bU7X Gh cHo//vj Gr5av5OT iV5HVLA2BGBlw7vh61Lji3LsDff6RYWAd2GVpdkSM2ExBMaXYDNGNN0pWUVnPXYZ3SIjOB/Pzq51T6tzo4IgkVFuVOA7Wi7fg4UraouwNapF/QYV72nnzK8yQXYjDH ER0Zzs/PG8T3Zyzi3wvzuGZcT69DCghLBIGgCiX5x5ZaLlxSXYCtfSdnYz/owuqbtWLa7mGnMa3ZuUOTGdu7M3/6YA0XD 9OQofWfzlpTZYI/KG0xC3HkFP9t3 70y08CpKHQ8Y11Xv7nfsE7O5cY4x/iQj3XTSYC//vS/7y8Truu2iw1yH5nSWCxqoocx6beLTqZlUBNldiP hzutu2n m08/u5AJsxpmUN6Z7AFaPTeWHu5jb5eFNPEoGI/BG4CDgCbACuV9U9XsRSL1XnAem VTe3LfMpwJbkbPCHTXH39jOcZh9jTJtz59kDeHvpVn7zv5U8e/0Yr8PxK6 OCD4Efqaq5SLye BnwN0exVLt4K7qiptHC7C5D2OLiHYekj76u9U3a3XsYU08xoSIpNh23DqxH799ZzVz1uxgwoC281gWTxKBqn7g83YeMLnFgyg/7NTe8a3Fs2uj21GgywDof171zVpdBwesAJsxpnWYfmJvXp7/Db9 eyUn9UtqM8/BCIZzBDcAr9bVUURuAm4C6NGjiZUAKyth14Zjb9TalguVTv0bYpOda/VHuSd0u4 CaHvSlTHmWFERYdx7wWC 90I2L83bwvUn9fY6JL8I2A1lIvIRUNttr/eq6htuP/cCWcAkbUAgTb6h7I0fwuKXnNeRMW7Tjk8tnoTUxo/TGBOSVJVrnllAbkEJc34ygU4xwf9sbM9uKDvew 1F5DrgQmBiQ5JAswybCuljqwuwhVkpBGNM04gIv7xwMOf95XMe 2gtD14y1OuQms2rq4bOxTk5fJqqHgz4BPucFvBJGGNCx4DkOK4a25MZ87/h6nE96d8tzuuQmsWrMx1/BeKAD0VkiYg86VEcxhjTJLef1Z YqHB /fZKWlPNttp4kghUtZ qpqvqSPfvZi/iMMaYpuocE8VtZ/bni3U7 XjVDq/DaZa2ce2TMcZ44JrxPenbJYbfvLOKI WVXofTZJYIjDGmiSLDw/jFhYPZtPMAz3 92etwmswSgTHGNMPpA7oyYUAXHv94HTv3H/Y6nCaxRGCMMc30iwsGc6isgkc/WHv8noOQJQJjjGmmfl1juWZ8T15d A0rC/d6HU6jWSIwxhg/uG1if2LbRfDEnPVeh9JolgiMMcYPEjpEMikjjQ9WbGfPwSNeh9MolgiMMcZPpmalc6SikjeWFHodSqNYIjDGGD8Z3D2eoanxvLowz tQGsUSgTHG NHUrHRWbt3L8oISr0NpMEsExhjjR5eMSCUqIoxZ2a3nqMASgTHG FFCh0jOHZLMf5cUUlpW4XU4DWKJwBhj/GxqVjolh8r4YOV2r0NpEEsExhjjZyf2TSS1Y3tmtpKTxpYIjDHGz8LChClZaXy1YSd5uwL/7K3mskRgjDEBMDkzDYD/LMr3OJLjs0RgjDEBkNapAyf3S2JWdj6VlcH9BDNLBMYYEyBTstIp2HOIrzcUex1KvSwRGGNMgJw9uBsJ7SOZGeT3FFgiMMaYAImODOfSkd15b8U2Sg6WeR1OnSwRGGNMAE3JSudIeSVvLC3wOpQ6WSIwxpgAGpqawJDu8UHdPORpIhCRn4iIikiSl3EYY0wgTc1KZ3nBXlYUBmchOs8SgYikA2cB33gVgzHGtIRLRnZ3C9EF5z0FXh4RPAb8FAjuC2yNMaaZOnaI4pwhyby uCAoC9F5kghE5GKgQFWXNqDfm0QkW0Syi4qKWiA6Y4zxv6lZaZQcKuPDICxEF7BEICIficjyWv4uAe4F7mvIeFT1KVXNUtWsLl26BCpcY4wJqJP6JjmF6ILwpHFEoEasqmfW9rmIDAN6A0tFBCANWCQiY1R1W6DiMcYYL4WFCZMz03j8k3Xk7z5IWqcOXod0VIs3Dalqrqp2VdVeqtoLyAcyLAkYY9q6o4XocoLrngK7j8AYY1pIeucOnNQ3iVk5eUFViM7zROAeGez0Og5jjGkJU7LSyN99iLkbg6cQneeJwBhjQsk5Q5KJj44IqpPGlgiMMaYFRUeGc moVN5dHjyF6CwRGGNMC5vqFqJ7M0gK0VkiMMaYFjY0NYHBKfHMDJKSE5YIjDHGA1Oz0sgtKGFl4V6vQ7FEYIwxXrhkZCpR4WFBcdLYEoExxnigU0wUZw/pxn XFHC43NtCdJYIjDHGI1Oz0tlz0PtCdJYIjDHGIyf1qypE5 1JY0sExhjjkfAw4fLMNL5YV0TBnkOexWGJwBhjPDQlMw1V E Od0cFlgiMMcZD6Z07cFK/RE8L0VkiMMYYj03NSidv1yHmeVSIzhKBMcZ47JwhycR5WIjOEoExxngsOjKcS0e6hegOtXwhOksExhgTBKZmpXO4vJI3lxa2 LQtERhjTBAYmhrPoJR4ZnnQPGSJwBhjgoCIMDUrjWX5Jaza2rKF6CwRGGNMkLjUo0J0lgiMMSZIdIqJ4qwh3fjv4pYtRGeJwBhjgsjUrHR2Hyzjo5U7WmyalgiMMSaInNwvie4J0S3aPORZIhCRW0VkjYisEJE/eBWHMcYEk/AwYXJmGp vK6KwhQrReZIIROR04BJguKoOAR7xIg5jjAlGkzPTW7QQnVdHBN8HHlbVwwCq2nKNYcYYE R6JHbgxL6JzMrJb5FCdF4lgv7AKSIyX0Q E5HRdfUoIjeJSLaIZBcVFbVgiMYY452pWel8s sg8zftCvi0ApYIROQjEVley98lQATQCRgH3AXMFBGpbTyq pSqZqlqVpcuXQIVrjHGBJVzh7ZcIbqAJQJVPVNVh9by9waQD7ymjgVAJZAUqFiMMaa1iY4M55KR3Xkndyt7SwNbiM6rpqH/AmcAiEh/IArY6VEsxhgTlI4WolsS2EJ0XiWCfwF9RGQ58Apwnap682geY4wJUsNSExiYHBfwQnSeJAJVPaKqV7tNRRmq okXcRhjTDBzCtGlszS/hNXbAleIzu4sNsaYIHbpqFRO7d FsvLANZpEBGzMxhhjmq1zTBQv3DAmoNOwIwJjjAlxlgiMMSbEWSIwxpgQZ4nAGGNCnCUCY4wJcZYIjDEmxFkiMMaYEGeJwBhjQpy0phI/IlIEbGni4EkEZ2E7i6txLK7GsbgaJ1jjgubF1lNV66zj36oSQXOISLaqZnkdR00WV NYXI1jcTVOsMYFgY3NmoaMMSbEWSIwxpgQF0qJ4CmvA6iDxdU4FlfjWFyNE6xxQQBjC5lzBMYYY2oXSkcExhhjamGJwBhjQlybSgQiMkVEVohIpYjUeZmViJwrImtEZL2I3OPzeWcR VBE1rn/O/kpruOOV0QGiMgSn7 9InKb2 1 ESnw6XZ S8Xl9rdZRHLdaWc3dvhAxCUi6SLyqYiscr/zH/t08 vyqmt98ekuIvK4232ZiGQ0dNgAx3WVG88yEflaREb4dKv1O22huCaISInP93NfQ4cNcFx3 cS0XEQqRKSz2y0gy0tE/iUiO9znt9fWvWXWLVVtM3/AIGAAMAfIqqOfcGAD0AeIApYCg91ufwDucV/fA/zeT3E1arxujNtwbgIBuB/4SQCWV4PiAjYDSc2dL3/GBaQAGe7rOGCtz/fot VV3/ri08/5wLuAAOOA Q0dNsBxnQh0cl fVxVXfd9pC8U1AXi7KcMGMq4a/V8EfNICy tUIANYXkf3Flm32tQRgaquUtU1x ltDLBeVTeq6hHgFeASt9slwPPu6 eBS/0UWmPHOxHYoKpNvYu6oZo7v54tL1XdqqqL3Nf7gFVAqp m76u 9cU33hfUMQ/oKCIpDRw2YHGp6tequtt9Ow9I89O0mxVXgIb197ivBP7tp2nXSVU/B3bV00uLrFttKhE0UCqQ5/M n oNSDdV3QrOhgbo6qdpNna8V/DtlfAW99DwX/5qgmlEXAp8ICI5InJTE4YPVFwAiEgvYBQw3 djfy2v taX4/XTkGEDGZevG3H2LKvU9Z22VFzjRWSpiLwrIkMaOWwg40JEOgDnAv/x ThQy t4WmTdanUPrxeRj4DkWjrdq6pvNGQUtXzW7Gto64urkeOJAi4Gfubz8d BX PE WvgUeCGFozrJFUtFJGuwIcistrdk2kyPy6vWJwf7G2qutf9uMnLq7ZJ1PJZzfWlrn4Csq4dZ5rf7lHkdJxEcLLPx37/ThsR1yKcZs/97vmb/wInNHDYQMZV5SLgK1X13VMP1PI6nhZZt1pdIlDVM5s5inwg3ed9GlDovt4uIimqutU9/Nrhj7hEpDHjPQ9YpKrbfcZ99LWI/BN4uyXjUtVC9/8OEXkd57D0czxeXiISiZMEZqjqaz7jbvLyqkV968vx olqwLCBjAsRGQ48DZynqsVVn9fznQY8Lp Ejaq IyJPiEhSQ4YNZFw vnVEHsDldTwtsm6FYtPQQuAEEent7n1fAbzpdnsTuM59fR3QkCOMhmjMeL/VNuluDKtcBtR6hUEg4hKRGBGJq3oNnO0zfc Wl4gI8AywSlX/VKObP5dXfeuLb7zXuld4jANK3CathgwbsLhEpAfwGnCNqq71 by 77Ql4kp2vz9EZAzOdqi4IcMGMi43ngTgNHzWuQAvv4uTHAAAAZ9JREFUr NpmXXL32fBvfzD dHnA4eB7cD77ufdgXd8 jsf5yqTDThNSlWfJwIfA vc/539FFet460lrg44P4iEGsO/COQCy9wvO6Wl4sK5KmGp 7ciWJYXTjOHustkift3fiCWV23rC3AzcLP7WoC/ud1z8blira51zU/L6XhxPQ3s9lk 2cf7Tlsorlvc6S7FOYl9YjAsL/f9dOCVGsMFbHnh7PRtBcpwtl03erFuWYkJY4wJcaHYNGSMMcaHJQJjjAlxlgiMMSbEWSIwxpgQZ4nAGGNCnCUCY4wJcZYIjDEmxFkiMKYZRGS0W9wu2r0DdYWIDPU6LmMaw24oM6aZROQhIBpoD Sr6u88DsmYRrFEYEwzubVeFgKlOOUSKjwOyZhGsaYhY5qvMxCL86S0aI9jMabR7IjAmGYSkTdxnhDVG6fA3S0eh2RMo7S65xEYE0xE5FqgXFVfFpFw4GsROUNVP/E6NmMayo4IjDEmxNk5AmOMCXGWCIwxJsRZIjDGmBBnicAYY0KcJQJjjAlxlgiMMSbEWSIwxpgQ9/8BD7Zxj7SDpRkAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"tarN = 1_000\n",
"nontarN = 1_000\n",
"nontar_rv = skewnorm(a=4, loc=-0.5, scale=0.5)\n",
"tar_rv = skewnorm(a=-4, loc=0.5, scale=0.5)\n",
"\n",
"run(nontar_rv, tar_rv, nontarN, tarN, \"Balanced dataset with skew-normally distributed scores\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
},
"colab": {
"name": "Logistic Calibration.ipynb",
"provenance": [],
"collapsed_sections": []
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment