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Abstract

This paper introduces SMCP3, a method for
automatically implementing custom sequential
Monte Carlo samplers for inference in proba-
bilistic programs. Unlike particle filters and
resample-move SMC (Gilks and Berzuini, 2001),
SMCP3 algorithms can improve the quality of
samples and weights using pairs of Markov pro-
posal kernels that are also specified by prob-
abilistic programs. Unlike Del Moral et al.
(2006b), these proposals can themselves be com-
plex probabilistic computations that generate
auxiliary variables, apply deterministic trans-
formations, and lack tractable marginal den-
sities. This paper also contributes an effi-
cient implementation in Gen1 that eliminates the
need to manually derive incremental importance
weights. SMCP3 thus simultaneously expands
the design space that can be explored by SMC
practitioners and reduces the implementation ef-
fort. SMCP3 is illustrated using applications to
3D object tracking, state-space modeling, and
data clustering, showing that SMCP3 methods
can simultaneously improve the quality and re-
duce the cost of marginal likelihood estimation
and posterior inference.

1 INTRODUCTION
This paper introduces SMCP3, a probabilistic program-
ming framework for custom sequential Monte Carlo
(SMC) inference. Compared to modern SMC frame-
works (Cusumano-Towner et al., 2018; Dai et al., 2022;
Del Moral et al., 2006b; Gilks and Berzuini, 2001), SMCP3

simultaneously expands the algorithm design space and
reduces the implementation effort, making it easier for

1https://github.com/probcomp/GenSMCP3.jl
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practitioners to efficiently improve the quality of samples
and particle weights. SMCP3 algorithms work by apply-
ing pairs of Markov proposal kernels to weighted parti-
cles. Unlike Del Moral et al. (2006b), these proposals can
themselves be complex probabilistic programs that gen-
erate auxiliary variables, apply deterministic transforma-
tions, and lack tractable marginal densities. This paper de-
scribes a Gen implementation of SMCP3 that automatically
and efficiently calculates incremental importance weights
(Sec. 4 and Appx. E). Redundant computation is avoided
via static analysis, and Jacobian corrections are calculated
via automatic differentiation.

SMCP3 is illustrated using applications to 3D object track-
ing, state-space modeling, and data clustering. Expeir-
ments show that on both synthetic and real-world datasets,
SMCP3 methods can simultaneously improve the qual-
ity and reduce the cost of marginal likelihood estimation
and posterior inference, relative to strong SMC baselines.
For example, for online state estimation, we show that an
SMCP3 algorithm can use a gradient-based Markov pro-
posal to improve sample quality relative to particle filtering,
and also use a simple backward Markov kernel to improve
importance weights relative to resample-move SMC. For
online data-clustering, we show that an SMCP3 algorithm
can improve over a locally-optimal SMC baseline, by split-
ting or merging clusters in response to each new datapoint.
We also show that a pair of grid-based Markov kernels can
simultaneously improve runtime performance and accuracy
for 3D object tracking with a non-differentiable likelihood.

Contributions. This paper contributes:

1. The SMCP3 mathematical framework (Section 3),
which shows how to compute valid weights when pro-
posals are general probabilistic programs that may not
admit tractable marginal densities.

2. An method for efficiently automating custom SMCP3

algorithms in probabilistic programming systems, and
an implementation in Gen (Section 4).

3. Example SMCP3 algorithms for state space modeling
and data clustering, which exploit the new degrees of
freedom in SMCP3 and outperform strong resample-
move and particle filter baselines (Section 5).

https://github.com/probcomp/GenSMCP3.jl
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Figure 1: Left: In most treatments of SMC, proposals are assumed to have probability densities k(x → y) that can
be evaluated exactly. To support more general proposals, we formalize SMCP3 in terms of probabilistic computations
K : X ⇝ Y , which make proposals in two steps: they first sample a random value uK , then apply a deterministic
function fK to get y. Importantly, only the density of uK must be available, not the marginal density of y. Right: SMCP3

generalizes Del Moral et al. (2006a), by supporting K and L proposals specified as probabilistic computations, rather than
as probability densities. In Section 4, we explain how any probabilistic program can be seen as a probabilistic computation,
and show how to automate the calculation of the weight ŵ when P̃ , K and L are given as probabilistic programs.

2 BACKGROUND

Consider a sequence (P̃t)t∈{1,...,T} of unnormalized target
distributions, defined over spaces Xt, and write Pt for the
normalized targets 1∫

P̃t(dx)
P̃t. The entire sequence may be

of intrinsic interest (corresponding, e.g., to evolving poste-
riors of an object’s position as we receive sensor data), or
it may be hand-designed to form a “bridge” of increasingly
difficult subproblems, culminating in the true target PT .

Example 2.1 (State-space models). In state-space mod-
els, Xt = Zt for some state space Z, and P̃t are un-
normalized filtering posteriors, with densities p̃t(z1:t) =
pinit(z1)pobs(y1 | z1)

∏t
i=2 pdyn(zi | z1:i−1)pobs(yi | zi)

for some fixed sequence of observations y1:t.

Example 2.2 (Data annealing). In Bayesian data analysis,
if we assume a dataset is drawn iid from pobs(yi | θ) for
some latent θ ∈ Θ, we can take Xt = Θ for all t, and set
target densities p̃t(θ) = pprior(θ)

∏t
i=1 pobs(yi | θ). Then

the normalized target Pt is the posterior on θ given only the
first t datapoints.

The goal of SMC is to develop particle approximations
{(xi

t, w
i
t)}Ni=1 to each P̃t, satisfying proper weighting.

Definition 1. A particle (x,w) is properly weighted for P̃
if E[wf(x)] =

∫
f(x)P̃ (dx) for any integrable f .

SMC successively approximates each target, using the par-
ticles for one target as starting points to form particles for
the next. After initializing {(xi

1, w
i
1)}Ni=1 via importance

sampling targeting P̃1, SMC alternates between resampling
(selecting promising particles to serve as the basis for fu-

ture inferences) and updating (modifying each particle in-
dependently to approximate the next target).
Example 2.3 (Bootstrap filter). Consider a state-space
model as in Example 2.1. The bootstrap particle filter
updates a particle (z1:t−1, w) to (z1:t, w

′) by sampling
zt ∼ pdyn(· | z1:t−1) and computing w′ = w ·pobs(yt | zt).
Example 2.4 (Resample-Move). The resample-move fil-
ter (Chopin, 2002; Gilks and Berzuini, 2001) first runs
MCMC moves (with invariant distribution Pt−1) on the
previous state z1:t−1, then runs a bootstrap update, with
zt ∼ pdyn(· | z1:t−1), and w′ = w · pobs(yt | zt).

Two key criteria often guide the design of SMC algorithms:

• Sample quality. How close are the samples xi
t, in distri-

bution, to the normalized targets Pt?

• Weight quality. How precisely do the weights measure
the quality of the samples?

These goals can sometimes be in conflict. For example,
because the bootstrap filter proposes samples according to
the model’s dynamics, without regard for the observed data
yt, its sample quality can be poor. The MCMC moves in
the resample-move algorithm can improve sample quality,
but these improvements are not reflected in the updated
weights: the observations y1:t−1 are not rescored and there-
fore the MCMC gets no “credit” for improving the existing
trajectory. This poor weight quality can lead to less accu-
rate importance sampling estimates of marginal likelihoods
and posterior expectations. It also reduces the value of re-
sampling, and thus can reduce end-to-end sample quality.
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In this paper, we automate a broad family of SMC up-
dates that help to navigate this tradeoff, to achieve good
sample quality and accurate importance weights. Follow-
ing Del Moral et al. (2006a), each SMC update is parame-
terized by two proposals, called K and L (Fig. 1, top):

• The proposal K(xt−1 → xt) aims to propose a value xt

approximately distributed according to Pt, using a par-
ticle xt−1 from the existing collection to inform its pro-
posal. Improving K improves the sample quality.

• The proposal L(xt → xt−1) is used only to improve
weight quality. Given xt, the ideal L proposal assigns
high probability to values of xt−1 which are likely to
have been input to K, given that it generated xt.

In theory, by carefully designing K and L proposals, prac-
titioners can build arbitrarily accurate SMC algorithms.
But in prior work, K and L must be chosen so their density
ratio can be computed exactly, greatly restricting the design
space. Furthermore, experimenting with K and L propos-
als can be tedious and error-prone: each change means new
code for sampling and for computing weights, the sound-
ness of which can be hard to unit-test. This paper presents
(1) a new SMC algorithm that supports a broader class of
K and L proposals, and (2) a probabilistic programming
technique for automating its correct implementation, for K
and L proposals expressed as probabilistic programs.

3 THE SMCP3 ALGORITHM

Alg. 1 presents SMCP3, our variant of SMC.2 The key nov-
elty in Alg. 1 is in how particle updates are implemented
and how incremental importance weights are computed.
Ultimately, we wish to accept user-specified probabilistic
programs as K and L proposals, and automate the neces-
sary sampling and weight calculations. To that end, we
formulate updates not in terms of proposal densities but
rather probabilistic computations (Fig. 1, bottom), which
may simulate many random numbers, then apply determin-
istic post-processing to generate an update.
Definition 2. A probabilistic computation K : X ⇝ Y
between spaces X and Y is a tuple (UK , QK , fK), where:

• UK is a space of auxiliary randomness,

• QK is a probability kernel taking an input x ∈ X and
outputting a sample uK ∈ UK , with density qK , and

• fK : X × UK → Y is a deterministic function.3

2To simplify the presentation, Alg. 1 uses multinomial resam-
pling at every time step (L8-9). SMCP3 also works with other
popular resampling strategies (Douc and Cappé, 2005), as well as
adaptive resampling policies based on effective sample size.

3Throughout the paper, we suppress some measure-theoretic
details; for example, we must fix a reference measure on UK with
respect to which qK is computed, and fK must be a measurable
map. See Appendix A for a more formal exposition.

Algorithm 1 SMCP3

Require: Sequence of target densities p̃t
Require: Initial proposal Q1 w/ density q1
Require: Forward proposals Kt : Xt−1 ⇝ Xt × ULt

Require: Backward proposals Lt : Xt ⇝ Xt−1 × UKt

Require: Number of particles N
Ensure: (xi

t, w
i
t)

N
i=1 properly weighted for P̃t

1: ▷ Initialize particles with importance sampling
2: for i = 1, . . . , N do
3: xi

1 ∼ Q1

4: wi
1 ←

p̃1(x
i
1)

q1(xi
1)

5: end for
6: ▷ Main SMC loop
7: for t = 2, . . . , T do
8: ▷ Draw ancestor indices
9: (ait)

N
i=1 ∼ Categorical([w1

t−1, . . . , w
N
t−1])

10: ▷ Compute average weight

11: Wt−1 ←
∑N

i=1 wi
t−1

N
12: for i = 1, . . . , N do
13: x̃← x

ai
t

t−1

14: ▷ Draw auxiliary randomness uKt

15: uKt
∼ QKt

(x̃→ ·)
16: ▷ Apply deterministic transformation
17: (xi

t, uLt)← fKt(x̃, uKt)
18: ▷ Compute density ratio
19: ŵi

t ←
p̃t(x

i
t)qLt (x

i
t→uLt )

p̃t−1(x̃)qKt (x̃→uKt )

20: ▷ Factor in change-of-variables (cf. Thm 1)
21: ŵi

t ← ŵi
t ·

dξtL
d(ξtK◦f−1

Kt
)
(xi

t, uLt
)

22: ▷ Weight update
23: wi

t ←Wt−1ŵ
i
t

24: end for
25: end for

To run a probabilistic computation, we sample u ∼
QK(x → ·), then compute y = fK(x, u). Importantly,
we do not assume we know the marginal density of y.

In SMCP3, users specify updates by defining a pair of
probabilistic computations, to serve as K and L proposals:

Definition 3 (SMCP3 move). An SMCP3 move from P̃t−1

to P̃t is a pair of probabilistic computations Kt : Xt−1 ⇝
Xt × ULt

and Lt : Xt ⇝ Xt−1 × UKt
, satisfying:

• Full support: If p̃t(xt)qLt(xt → uLt) > 0, then
letting (xt−1, uKt) = fLt(xt, uLt), we must have
p̃t−1(xt−1)qKt

(xt−1 → uKt
) > 0.

• Invertibility: If p̃t−1(xt−1)qKt(xt−1 → xt) > 0, then
fLt(fKt(xt−1, uK)) = (xt−1, uK).

We now unpack the intuition behind this definition.

K proposal. The role of Kt in Alg. 1 is to transform a par-
ticle xt−1 from the approximation of P̃t−1 into a particle
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xt for the approximation of P̃t. To do so, it samples uKt

(L15) and then applies a deterministic transformation fK
to (xt−1, uKt

) (L17). This yields not just an updated parti-
cle xt, but also an extra output uLt

, in which the user can
stash any auxiliary data useful for meeting the invertibility
requirement from Def. 3. Intuitively, we need the extra out-
put uLt (and the invertibility requirement itself) thanks to
two difficulties in computing an updated weight for xt:

1. In a traditional particle filter, the weight update requires
computing the density of xt under the proposal. But in
our setting, many different random samples uKt could
result in the same proposed xt, and computing the pro-
posal’s density would require intractable marginaliza-
tion over these many ways Kt could have generated xt.
If we use our extra output uLt

to record which of those
ways was used, we can avoid this marginalization.

2. A traditional particle filter’s weight update formula is
based partly on the fact that the new state xt is an ex-
tension of the old state xt−1; no information about xt−1

is forgotten during the update. In our setting, Kt is an
arbitrary probabilistic computation, which may edit its
input xt−1. If it does, uLt can record information about
xt−1 overwritten or lost during the update.

The invertibility requirement in Def. 3 enforces that uLt

stores enough information about the update to address both
these challenges, enabling deterministic recovery (via fLt

)
of the previous state xt−1 and the randomness uKt

of Kt.

L proposal. Unlike Kt, which is used to generate pro-
posals, Lt is never run forward by Alg. 1; it is used only to
inform the weight computation. The overall goal of Lt is to
“guess” how Kt generated a given xt: it outputs a hypoth-
esized previous particle xt−1, and hypothesized auxiliary
randomness uKt

. To do so, it samples uLt
∼ QLt

(xt → ·)
and computes (xt−1, uKt

) = fLt
(xt, uLt

).

The full support requirement in Def. 3 enforces that Lt can
only make valid guesses: the xt−1 it guesses must be in the
support of the previous target P̃t−1, and the uKt

it guesses
must be within the support of QKt

(xt−1 → ·). Because we
can feed any xt in the support of P̃t into Lt, the requirement
also enforces that Kt must have some way of proposing any
xt in the new target’s support.

Computing weights. Given an SMCP3 move, we can use
Kt to propose a new particle value xt (L14-17), but we still
need to compute a new weight wt. The key desideratum is
that (xt, wt) be properly weighted (Def. 1) for P̃t.

The weight that Alg. 1 computes is the product of a density
ratio (L19) with a change-of-variables correction (L21).
The calculation is based on combining two ideas:

1. We choose to view the pair (xt, uLt) as a proposal for
an extended target distribution, p̃t(xt)qLt

(xt → uLt
).

Marginalizing uLt
yields the original target p̃t, so if

((xt, uLt
), wt) is properly weighted for the extended

target, then (xt, wt) will be properly weighted for the
original target. This explains the numerator in L19.

2. We compute a change-of-variables correction to account
for the transformation, by fKt

, of samples (xt−1, uKt
)

into samples (xt, uLt
). The denominator in L19 gives

the proposal density before the transformation, and then
L21 multiplies in the correction.

Thanks to invertibility (Def. 3), fKt
behaves like a bijec-

tion, enabling the application of standard techniques for
computing change-of-variables corrections. For example,
when all model and proposal variables are continuous and
fKt

is differentiable, the correction is the absolute value of
the determinant of the Jacobian matrix of fKt

. More gen-
erally, the correction is a Radon-Nikodym derivative:

Theorem 1. Let (K,L) be an SMCP3 move from P̃t−1 to
P̃t. If (x,w) is properly weighted for P̃t−1, then letting
uK ∼ QK(x → ·), and (x′, uL) = fK(x, uK), the pair
(x′, ŵ · w) is properly weighted for P̃t, where

ŵ =
p̃t(x

′)qL(x
′ → uL)

p̃t−1(x)qK(x→ uK)
· dξtL
d(ξtK ◦ f

−1
K )

(x′, uL),

and ξtL and ξtK are reference measures defined in Appx. A.

The correction factor can be calculated in very general set-
tings (Lew et al., 2021b; Radul and Alexeev, 2021), includ-
ing whenever fK can be expressed in a Turing-complete
language with piecewise-differentiable primitives (Huot
et al., 2023). In Sec. 4, we show how to automate it when
models and moves are given as Gen probabilistic programs.

Practical proposal design guidelines. Kt should be de-
signed so that the xt it computes is approximately dis-
tributed according to the new target Pt, assuming the in-
put value xt−1 is distributed according to Pt−1.Thanks to
invertibility, once Kt is fixed, the only degree of freedom
that remains in designing Lt is to choose the proposal QLt

.
A reasonable strategy is to approximate the locally optimal
proposal, as characterized by the following proposition:

Proposition 1. Consider the distribution of (xt, uLt) when
Kt is run on xt−1 ∼ pt−1. The conditional distribution of
uLt

given xt is the locally optimal choice of QLt
, minimiz-

ing the variance of the incremental weight ŵ.4

In practice, the runtime of Kt and Lt will also be impor-
tant considerations, as using faster proposals enables higher
particle counts. For example SMCP3 proposals, see Sec. 5.

Convergence of SMCP3. SMCP3 algorithms can be for-
mulated as Feynman-Kac models, so we can use standard
convergence arguments (Chopin et al., 2020).5

4The optimality is only local in that, by incorporating knowl-
edge about the specific update kernels applied at steps 1 through
t − 1, it is possible to design QLt kernels that—although they
yield higher-variance incremental weights—reduce the overall
variance of wt = ŵ ·Wt−1.

5Prop. 2 sometimes holds even when (Kt, Lt) are chosen
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@gen function model(t)
z = 0
for step in 1:t
z = {"z$(step)"} ˜ normal(z, 1.0)
y = {"y$(step)"} ˜ normal(z, 1.0)

end
end

(a) Gen implementation of a simple dynamic model.

function smc_move(t, new_obs)
@gen function K(tr)
# Sample v from dynamics model
prev_z = tr["z$(t-1)"]
v = {"v"} ˜ normal(prev_z, 1.0)
# Unadjusted Langevin Ascent to sample z
z = {"z"} ˜ ULA(v, z_prev, new_obs)
# Update trace with newly proposed z
tr["z$(t)"] = z
# Return proposed trace & aux. randomness
return (tr, Trace("v" => v))

end
@gen function L(tr)
# Guess the aux. var that K sampled
prev_z = tr["z$(t-1)"]
v = {"v"} ˜ normal(prev_z, 1.0)
# Return previous step's trace, and trace
# of K that would bring us to this trace.
return (Trace(["z$(i)" => tr["z$(i)"]

for i in 1:t-1]...),
Trace("v" => v, "z" => tr["z$(t)"]))

end
return (K, L)

end

(b) An SMCP3 move, specified using Gen programs.

Figure 2: Gen implementation of the example in Sec. 5.1.

Proposition 2 (Central Limit Theorem). If P̃t, Kt, Lt

are such that the incremental weights ŵt
i in Alg. 1 are

bounded above, then for any continuous, bounded function
φ : Xt → R, there exists σ s.t.

√
N

(
1

N

N∑
n=1

wt
nφ(x

t
n)−

∫
Xt

φ(x)P̃t(dx)

)
D→ N (0, σ)

as N →∞, where D→ is convergence in distribution.

4 AUTOMATING SMCP3

In this section, we show how to automate correct imple-
mentations of SMCP3, when the target distributions and
particle updates are specified as probabilistic programs.

Gen programs. We work with the PPL Gen (Cusumano-
Towner et al., 2019), in which a probabilistic program is an
ordinary (deterministic) Julia function, augmented with the
syntactic construct {name} ∼ distribution. This
statement causes Gen to sample a random value from a dis-
tribution (e.g., normal(0, 4)), and to associate the value

adaptively based on properties of the current particles (Beskos
et al., 2016; Fearnhead and Taylor, 2013). But, as in standard
SMC, such updates may invalidate proper weighting for finite N .

Algorithm 2 Automated SMCP3 update
Require: model Gen program P
Require: previous and current observations yt−1, yt
Require: (x,w) properly wtd. for P̃ yt−1(t− 1→ ·)
Require: Gen programs Kt, Lt specifying move
Ensure: (x′, w′) properly weighted for P̃ yt(t→ ·)

1: uKt
← SAMPLE-TRACE(Kt, x)

2: ((x′, uLt
), Ĵ)← AD(COMPUTE-RETVAL(Kt, x, uKt

))
3: log qKt ← EVALUATE-LOGPDF(Kt, x, uKt)
4: log p̃t−1 ← EVALUATE-LOGPDF(P, t− 1, x⊕ yt−1)
5: log p̃t ← EVALUATE-LOGPDF(P, t, x′ ⊕ yt)
6: log qLt

← EVALUATE-LOGPDF(Lt, x
′, uLt

)
7: log r ← log p̃t − log p̃t−1 + log qLt

− log qKt

8: logw′ ← logw + log r + log |det Ĵ |
9: return (x′, logw′)

internally with the name name. When executing a Gen
program, we can turn on tracing to obtain two outputs: the
final value returned by the program, as well as a trace,
recording the names and values of all encountered ran-
dom variables. For example, when run with argument
t = 2, the Gen program model in Fig. 2a might gener-
ate the trace Trace("x1"⇒ 0.4,"y1"⇒ 1.1,"x2"⇒
0.2,"y2" ⇒ 0.3). The values in the trace will vary from
run to run, and because programs may make control flow
decisions on the basis of their samples, even the number
of sampling statements encountered may vary (and with it,
the set of variable names included in the trace). Appx. A
reviews the standard measure-theoretic machinery used to
reason rigorously about distributions over the space T of
program traces. The upshot is that the density of a trace
under a probabilistic program can be computed by multi-
plying the conditional densities of each primitive distribu-
tion encountered while generating the trace—just as we do
when computing a joint density for a Bayes net.

Gen programs as probabilistic computations. A Gen
probabilistic program taking arguments in space A and re-
turning values in space B implements a probabilistic com-
putation P : A ⇝ B. The space UP of auxiliary ran-
domness is T, the space of execution traces; the auxiliary
distribution QP (a → ·) is the distribution over traces in-
duced by the program; and fP : A × T → B is a function
which computes the return value of the program, given its
inputs and the random choices it made during execution (as
captured in its trace). For any Gen program, Gen automates
the implementation of several useful operations, including:
1. SAMPLE-TRACE(P, a): Sample τ ∼ QP (a→ ·).
2. EVALUATE-LOGPDF(P, a, τ): Return log qP (a→ τ).
3. COMPUTE-RETVAL(P, a, τ): Return fP (a, τ).
Defining sequences of unnormalized targets. Given an
argument a, a probabilistic program P defines a normal-
ized probability distribution over traces containing many
named variables. Just as a joint density p(x, y) can be re-
cast as an unnormalized density p̃(x) = p(x,y) for fixed
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Figure 3: Illustrative results on synthetic data. Top: A single inferred posterior sample, in two models. In the state-space
model, a true position is tracked from noisy observations over time. In the mixture model, clusterings are inferred for
increasing subsets of the data. Middle: Estimates of posterior expectations at each step, formed from particle collections.
We run each algorithm 5 times. Bottom: Log marginal likelihood estimates at each inference step; higher is better.

data y, we can specify unnormalized targets in Gen by fix-
ing a trace y ∈ T of observations, mapping some of the
names at which P can sample to observed values. We de-
fine P̃y as the unnormalized kernel with density p̃y(a →
τ) = qP (a→ τ ⊕y), where⊕ merges two traces with dis-
joint sets of names. (If τ shares names with y, we define
p̃y(τ) to be 0.) A user defines a sequence of unnormalized
targets via (1) a probabilistic program P with argument
space A = {1, . . . , T} (the argument gives the position in
the sequence), and (2) a sequence (yt)

T
t=1 of observation

traces. This yields the sequence (P̃yt(t→ ·))Tt=1.

Specifying K and L. For 2 ≤ t ≤ T , the user specifies
Kt : T ⇝ T × T and Lt : T ⇝ T × T, as probabilistic
programs that accept model traces x as input and return
model and proposal traces as output (see Fig. 2b).6 For any
user-specified K and L, the two conditions from Def. 3 can
be automatically fuzz-tested; for details, see Appx. E.2.

Automating SMCP3. Given a model probabilistic pro-
gram P , observations yt−1 and yt, and Kt and Lt, Alg. 2
automates the SMCP3 update from a particle (x,w) prop-
erly weighted for P̃t−1 = P̃yt−1(t − 1 → ·) to a parti-
cle (x′, w′) properly weighted for P̃t = P̃yt(t → ·). It
samples uK ∼ QKt

(x → ·) (L1), computes (x′, uL) =
fKt(x, uK) (L2), evaluates model and proposal densities
(L3-6),7 and then computes the particle weight update (L7-
8). To compute the incremental weight, step (4) must

6Both models and proposals are probabilistic programs, so
Sec. 3’s state spaces Xt and auxiliary spaces UK , UL are all T.

7Alg. 2 separately computes log p̃t−1 and log p̃t. In Gen,
we directly compute their difference, for asymptotic speedups in
many cases (Cusumano-Towner et al., 2019); see Appendix E.3.

compute the change-of-variables correction from Thm. 1.
Thm. 2 shows that this factor can be computed by treating
fKt as a function of the continuous values in (xt−1, uKt)
(ignoring the discrete values in this pair), and computing
the determinant of its Jacobian (Ĵ , in Alg. 2).8

Theorem 2 (Informal). Let (Kt, Lt) be an SMCP3 move
such that fKt satisfies the differentiability-related con-
ditions in Appx. D. Let xt−1 ∼ Pt−1 and uKt

∼
QKt

(xt−1 → ·). Let xc
t−1 ++ uc

Kt
∈ RD denote the con-

catenation of all the continuous values in xt−1 and uKt
.

Let g : RD → Xt−1 × UKt be the function which re-
places the continuous values in (xt−1, uKt) with the val-
ues in the vector input to it, such that g(xc

t−1 ++ uc
Kt

) =
(xt−1, uKt

). Then with probability 1, there exists a neigh-
borhood OK of xc

t−1 ++ uc
Kt

such that every element
(x′

t, u
′
L) of (fKt

◦ g)(OK) contains D continuous values,
and if (xt, uLt) = fKt(xt−1, uKt),

dξtLt

d(ξtKt
◦ f−1

Kt
)
(xt, uLt

) = |det J(h◦fKt
◦g)(xc

t−1++ uc
Kt

)|

where J takes the Jacobian, h : (fKt ◦ g)(OK)→ RD is a
function extracting all the continuous values from any pair

(x′
t, u

′
L) into a vector, and

dξtLt

d(ξtKt
◦f−1

Kt
)

is as in Thm. 1.

8To compute Ĵ , our implementation uses forward-mode AD:it
replaces every real number in the input traces x and uKt with dual
numbers, runs COMPUTE-RETVAL (i.e., fKt ), and then reads out
the dual numbers that end up stored in the returned traces x′, uLt ,
to fill out the Jacobian matrix Ĵ . (We delete the dual components
before applying further operations to x′ and uLt on L5-6.)
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SMCP3 Particle Update (differentiable model)
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Figure 4: Top: A 2D illustration of the SMCP3 move from Fig. 2b, for online Bayesian state estimation. Bottom: A
variant of the move for use in models with non-differentiable probability densities, like that of Fig. 6. We use the notation
p(Z4 = ·,y4|z3) to indicate the joint density of (z4,y4) given z3, and p(Z4 = ·|z3) to indicate the density of z4 given z3.

5 EXAMPLES

We now demonstrate how probabilistic program proposals
can be used to improve inference, relative to baselines that
use simpler proposals with closed-form marginal densities.

When comparing algorithms for the same inference prob-
lem, we report log marginal likelihood estimates as mea-
sures of relative inference quality. In some applications
(e.g., particle MCMC (Andrieu et al., 2010)), these esti-
mates are of direct interest, but even if we care only about
accurate posterior inference, higher log marginal likeli-
hoods suggest lower KL divergences between the true and
approximate posteriors (Lew et al., 2022, Thm. 4).9 In this
section we run each algorithm with equal particle counts;
Appx. G shows similar results controlling for runtime.

5.1 Online Bayesian State Estimation

Model. We first study the Gaussian state-space model
from Fig. 2a. We take z0 = 0 ∈ Rd, and for t > 0,
set zt ∼ N (zt−1, I) and yt ∼ N (zt, I). We define

9Consider a generative model p(x, y) with observed data y.
Any SMC algorithm will produce an unbiased estimate of the
marginal likelihood p(y), but by Jensen’s inequality, the loga-
rithm of this estimate is a biased estimate of log p(y), and the
bias is always negative. The magnitude of this bias is bounded be-
low by the divergence DKL(p(x | y)||qALG(x;y)), where qALG is
the marginal distribution of one resampled particle from the SMC
algorithm in question (Lew et al., 2022). Algorithms with higher
expected log marginal likelihood estimates have smaller negative
bias, and in many cases, will have lower KL divergence to the true
posterior.
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Figure 5: SMCP3 vs baselines for online state estimation,
in the model from Figure 2a. Weighted particles generated
by SMC at t = 1, given x := z1 = 5. Pink curve: PDF of
P (Z1). Grey curve: PDF of the target P (Z1|y1).

our target distributions over the spaces Xt = Rdt, where
each xt ∈ Xt is a trajectory z1:t. The unnormalized tar-
get distributions are proportional to the filtering posteriors:
p̃t(z1:t) = p(z1:t)p(y1:t | z1:t) ∝ p(z1:t | y1:t).

SMCP3 algorithm. We set Kt and Lt as in Fig. 2b.
As illustrated in Fig. 4, Kt extends z1:t−1 with a
new value zt, generated by performing an unadjusted
Langevin ascent move from a random initial position v ∼
N (zt−1, I). Our simple choice of Lt ignores zt when
proposing v, generating it from N (zt−1, I). Specifically,
we have uKt

= (v, zt), and we take qKt
(z1:t−1 →

(v, zt)) = N (v; zt−1, I)N (zt; z
′,
√
2σI) where z′ =

v + σ2∇vp(Zt = v,yt|zt−1), σ is the step-size for the
Langevin move, and N denotes the density of a Gaus-
sian. We then have fKt(z1:t−1, (v, zt)) = (z1:t,v). uLt

is just the value v, with distribution qLt(z1:t → v) =
N (v; zt−1, I). The map fLt

(z1:t,v) = (z1:t−1, (v, zt)).
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Observed RGB Observed Depth Inferred Pose

Figure 6: Object tracking from depth video in a non-
differentiable state-space model.

Baselines. We compare to two baselines: a standard boot-
strap particle filter (Ex. 2.3), and a resample-move SMC
algorithm (Ex. 2.4), with Metropolis-adjusted Langevin as-
cent (MALA) rejuvenation on xt after each step.

Results. Fig. 3 illustrates inference on an example se-
quence of 1-D observations, and Tab. 1 gives log marginal
likelihood estimates for a synthetic 100-D dataset. SMCP3

outperforms both the bootstrap filter and the stronger
resample-move baseline; the 1-D illustration in Fig. 5 sheds
light on why. The bootstrap filter proposes from the prior,
and lands only a few particles near the mode of the poste-
rior. The resample-move algorithm’s MALA rejuvenation
successfully moves these proposals closer to the mode, but
does not update particle weights to reflect this progress, so
promising particles may be lost during resampling. SMCP3

uses an identical Langevin step to move the particles, but
accounts for this move in the weights, so that after resam-
pling the particle cloud will better reflect the new posterior.
SMCP3 also skips the Metropolis-Hastings accept/reject
step used in MALA, resulting in more particles moving.

Non-differentiable variant. In Figs. 4 and 6, we also con-
sider a variant of the model that uses a likelihood based
on a non-differentiable renderer, for object tracking from
depth video (Gothoskar et al., 2021). Instead of a ran-
domly initialized Langevin move, the K kernel samples a
proposed point from a coarse grid centered at a random lo-
cation, based on relative likelihoods at each grid point. As
in the differentiable model, this improves over the bootstrap
particle filter; see Appendix F.1.2 for details.

5.2 Online Bayesian Data Analysis

Model. We next consider a sequence of collapsed Dirich-
let process mixture models (DPMMs), each incorporat-
ing an additional data-point. The tth model places a
CRP ({1, . . . , t}) prior over partitions Πt of {1, . . . , t},
and for each cluster C ∈ Πt, generates data (yi)i∈C jointly
from an exchangeable likelihood F (y).10 We observe y1:t,
and inference targets the posterior over Πt given y1:t.

10We use different likelihoods F , to model numerical data, and
strings in a Medicare dataset; see Appx. F.2.1 for details.

Est. of logP (y1:T )
State-space model (Sec. 5.1)
100D trajectory (synthetic)

Bootstrap PF -4347.67 ± 83.21
Resample-Move SMC -2828.29 ± 22.78
SMCP3 ULA -2271.03 ± 10.86

Mixture model (Sec. 5.2)
Medicare data

Locally Optimal SMC -40851.15 ± 0.98
Resample-Move Split/Merge -16898.79 ± 1117.31
SMCP3 Split/Merge -13882.47 ± 0.24

Table 1: Expected log marginal likelihood estimates re-
turned by different algorithms; higher is better. We report
the empirical mean across many runs, and the standard de-
viation of our estimate across repeated multiple-run trials.

SMCP3 algorithm. Alg. 3 defines our proposal. Kt ac-
cepts as input a partition Πt−1 of the first t − 1 datapoints
and proposes a partition Πt, incorporating the new point yt.
To do so, it first performs a “Gibbs” assignment of yt to an
existing cluster C∗ ∈ Πt−1, or to a new cluster; if a new
cluster, Kt stops early and proposes Πt := Πt−1 ∪ {{t}}.
Otherwise, Kt decides between splitting C∗, merging C∗
with another cluster, or leaving C∗ be. This choice is made
based on a Monte Carlo estimate of the total probability of
all states in which C∗ is split; see Appx. F.2.2 for details.
Lt identifies the cluster C ′

∗ ∈ Πt containing t, then chooses
to either split, merge, or not change it to recover C∗.

Baselines. We compare to two baselines: an SMC algo-
rithm that uses the locally optimal proposal to incorporate
yt into the clustering (without splitting or merging), and a
resample-move version which adds split/merge MH moves.

Results. Tab. 1 reports log marginal likelihood esti-
mates on 1k rows from the Medicare Hospital Compare
dataset (Medicare, 2012). The locally optimal baseline
greedily assigns points to clusters, which can lead it to get
stuck in local modes. Both SMCP3 and resample-move
are able to escape local modes, but as in Sec. 5.1, SMCP3

computes better weights after splits/merges, leading to im-
proved log likelihood estimates.

6 RELATED WORK AND DISCUSSION
SMC. SMCP3 provides automation for many SMC al-
gorithms, including SMC samplers (Del Moral et al.,
2006b), resample-move SMC (Gilks and Berzuini, 2001),
and move-reweight SMC (Marques and Storvik, 2013).
Unlike this prior work, SMCP3 can be used to compute
proper SMC weights for proposals that incorporate auxil-
iary variables (Fearnhead et al., 2010; Finke, 2015; Lew
et al., 2022) and deterministic transformations. For infer-
ence over Rn, Everitt et al. (2020) show a technique for in-
corporating deterministic logic into SMC updates, with Ja-
cobian corrections similar to ours. SMCP3 generalizes and
extends their technique, adapting it to the more traditional
SMC setting with K and L kernels, and automating its ap-
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Algorithm 3 SMCP3 K kernel from Sec. 5.2.
Require: Partition Πt−1 of {1, . . . , t− 1}, data y1:t
Ensure: Partition Πt of {1, . . . , t}

1: procedure K(t,Πt−1, y1:t)
2: ▷ Incorporate yt into an existing or new cluster.
3: Φ⃗← [Πt−1 \ {c} ∪ {c ∪ {t}} : c ∈ Πt−1]

4: Φ⃗← Φ⃗ ++ [Πt−1 ∪ {{t}}] ▷ Append to Φ⃗
5: j ∼ Categorical([pt(Π, y1:t) : Π ∈ Φ])

6: Π1
t ← Φ⃗[j]; ct ← ClusterContaining(Πt, t)

7: ▷ Consider splitting or merging ct.
8: Π⃗← [Π1

t ] ▷ Vector of possible Πt to output.
9: Θ⃗← [pt(Π

1
t , y1:t)] ▷ Scores for elements of Π⃗.

10: if |c1t | > 1 then
11: ▷ Consider merges ct of with other clusters
12: for c ∈ Π1

t \ {ct} do
13: ▷ Merge c and ct.
14: ΠM

t ← Π1
t \ {c, ct} ∪ {c ∪ ct}

15: θM ← pt(Π
M
t , y1:t)

16: (Π⃗, Θ⃗)← (Π⃗ ++ [ΠM
t ], Θ⃗ ++ [θM ])

17: end for
18: end if
19: if |c1t | > 2 then
20: ▷ ProposeSplit samples a post-split clus-

tering ΠS
t , its score θS , and auxiliary choices uS .

21: ΠS
t , θ

S , uS ∼ ProposeSplit(Π1
t , y1:t)

22: (Π⃗, Θ⃗)← (Π⃗ ++ [ΠS
t ], Θ⃗ ++ [θS ])

23: else
24: uS ← nil
25: end if
26: i ∼ Categorical(Θ⃗); Πt ← Π⃗[i] ▷ Final clustering.
27: uL ∼ GenerateUL(y1:t,Πt,Πt−1,Π

S
t , u

S)
return (Πt, uL)

28: end procedure

plication when models and proposals are probabilistic pro-
grams. SMCP3 moves could also be incorporated into the
many algorithms that use SMC moves as building blocks,
including extensions to SMC (Chopin et al., 2013; Kuntz
et al., 2021; Lindsten et al., 2017) and pseudomarginal al-
gorithms (Andrieu et al., 2010; Lindsten et al., 2014).

Probabilistic programming. Many PPLs support au-
tomated SMC for models specified as probabilistic pro-
grams (Cusumano-Towner et al., 2019; Ge et al., 2018;
Goodman and Stuhlmüller, 2014; Lundén et al., 2021;
Mansinghka et al., 2014, 2018; Milch et al., 2006; Paige
and Wood, 2014; Ścibior et al., 2015; Wood et al., 2014).
Some also have support for restricted classes of cus-
tom SMC with proposals defined as probabilistic pro-
grams (Bingham et al., 2019; Cusumano-Towner et al.,
2018, 2019; Murray, 2013; Murray and Schön, 2018; Stites
et al., 2021). These languages’ restrictions prohibit pro-
posals that sample auxiliary variables or deterministically
transform samples. Stites et al. (2021) present combinators

for defining samplers, including a propose combinator
for custom SMC proposals. While these proposals can use
auxiliary variables, they are ignored for weight computa-
tion, yielding sound but potentially high-variance weights
(equivalent to a sub-optimal choice of L kernel in SMCP3).

Involutive MCMC. SMCP3 is inspired by automated in-
volutive MCMC (Andrieu et al., 2020; Cusumano-Towner
et al., 2020; Matheos et al., 2020; Neklyudov et al., 2020)
(IMCMC), an analogously general framework for auto-
mated, custom MH with probabilistic program proposals.
Indeed, the relationship between SMCP3 and IMCMC is
the same as that between SMC Samplers (Del Moral et al.,
2006b) and ordinary MH (Marques and Storvik, 2013).
When an SMC move leaves the target unchanged (P̃t−1 =
P̃t) and uses identical K and L proposals, an SMC Sam-
pler’s incremental weight is precisely the ordinary MH ac-
ceptance ratio with proposal Q = K = L, and SMCP3’s
incremental weight is precisely the involutive MCMC ac-
ceptance ratio with proposal Q = QK = QL and invo-
lution f = fK = fL. This connection clarifies one way
in which SMC generalizes MCMC: many programs could
serve as SMC K proposals that would not be valid MCMC
proposals, since they are not reversible and so L ̸= K.

Discussion. SMCP3 gives inference algorithm design-
ers a more flexible framework than previous formula-
tions, while automating the implementation details. Ini-
tial experiments show that proposals using the new de-
grees of freedom that SMCP3 offers can yield more ac-
curate inference than strong baselines. One important
area for future work is to improve speed through PPL
compilation techniques (Cusumano-Towner et al., 2019;
Huang et al., 2017; Lundén et al., 2022; Murray, 2020;
Paige and Wood, 2014; Wu et al., 2016) and massively
parallel hardware (Durham and Geweke, 2011; Lundén
et al., 2022; Murray et al., 2016; Paige et al., 2014). It
may also be possible to automatically tune the runtime
and robustness of probabilistic program proposals, us-
ing data-dependent (Cusumano-Towner and Mansinghka,
2017) and model-averaged (Domke, 2021) estimators of
SMC’s accuracy, or recent methods for differentiating
through SMC (Arya et al.; Corenflos et al., 2021; Lai et al.,
2022; Lew et al., 2023; Maddison et al., 2017; Naesseth
et al., 2018; Ścibior and Wood, 2021; Zhu et al., 2020).

Many questions about how best to design probabilistic pro-
posals remain open. For example, when is it worthwhile
to improve sample quality with a more complex K ker-
nel, at the expense of making it harder for L to generate
high-quality weights? We hope SMCP3’s Gen implemen-
tation will help researchers explore these questions, and
help practitioners apply advanced SMC to complex mod-
eling problems, by experimenting with richer probabilistic
computations in their proposals (perhaps based on back-
tracking search, optimization, and model-based planning).
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Appendix

This appendix contains:

• A measure-theoretic presentation of the key definitions and theorems (Appendix A).

• Omitted proofs (of Theorem 1, Theorem 2, and Proposition 2), in Appendices B, C, and D.

• Further details on automation (Appendix E), including:

– A brief introduction to the standard techniques Gen uses to automate the SAMPLE-TRACE, EVAL-LOGPDF,
and COMPUTE-RETVAL operations (Appendix E.1).

– A description of our automated fuzz-testing algorithm for detecting user proposal programs that violate the
conditions of Definition 3 (Appendix E.2).

– An explanation of how Gen efficiently implements automated SMCP3 updates (Algorithm 2) by exploiting can-
cellations in density ratios where possible (Appendix E.3)

• Full details on experimental setup, for each experiment in Section 5 (Appendix F). Code for reproducing the experi-
ments is also available, at https://github.com/probcomp/aistats2023-smcp3.

• Additional experiments which compare inference algorithms at equal runtimes (Appendix G). (This is provided be-
cause the results in Section 5 compare algorithms at equal particle counts rather than equal runtimes.)

A Measure-Theoretic Presentation

In this Appendix, we give more rigorous statements of the key definitions and theorems.

Mathematical setting for SMC. Consider a sequence P̃1, . . . , P̃T of unnormalized target measures, defined over measur-
able spaces X1, . . . XT . For each t, let µt be a reference measure with respect to which P̃t is absolutely continuous. We
write p̃t for the unnormalized density dP̃t

dµt
.

Definition 4 (Probabilistic computation). A probabilistic computation K : X ⇝ Y between measurable spaces X and Y
is a tuple (UK , µK , QK , fK), where:

• UK is a measurable space of auxiliary randomness.

• µK is a reference measure on UK .

• QK : X → UK is a probability kernel, such that QK(x, duK)≪ µK(duK) for all x ∈ X .

• fK : X × UK → Y is a measurable map.

We write qK(x→ uK) for the density of the kernel QK(x, duK) with respect to µK .

Definition 5 (SMCP3 move). An SMCP3 move from P̃t−1 to P̃t is a pair of probabilistic computations, Kt : Xt−1 ⇝
Xt × UL and Lt : Xt ⇝ Xt−1 × UK , satisfying:

• Full support: The measure P̃t(dxt)QLt
(xt, duLt

) must be absolutely continuous with respect to∫
Xt−1

∫
UKt

P̃t−1(dxt−1)QKt
(xt−1, duKt

)δfKt (xt−1,uKt )
(dxt, duLt

).

• Invertibility: P̃t−1(dxt−1)QKt
(xt−1, duKt

)-almost-everywhere, fLt
◦ fKt

should equal the identity map.

Definition 6 (Restriction of a measure). Let µ, ν be measures on X . Then R(µ, ν), the restriction of µ to the support of ν,
is the measure mapping a set E ∈ X to infA∈X {µ(E \A) | ν(A) = 0}.
Remark 1. Note that R(µ, ν) is absolutely continuous with respect to ν, and that if some other measure P is absolutely
continuous with respect to both µ and ν, it is absolutely continuous with respect to R(µ, ν), and dP

dR(µ,ν) =
dP
dµ .

In the definition below, we use the notation µ⊗ν to denote the product of two measures, and µ⊗κ to denote the product of a
measure with a kernel (that is, µ(dx)κ(x, dy)). Furthermore, we use the standard notation µ◦f−1 to mean the pushforward
of µ by measurable map f .

https://github.com/probcomp/aistats2023-smcp3
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Definition 7 (Reference measures ξtK and ξtL). Given an SMCP3 move (K,L) from P̃t−1 to P̃t, we define the reference
measures

• ξtK to be R(µt−1 ⊗ µK , P̃t−1 ⊗QK), the restriction of the product reference measure on Xt−1 × UK to the support
of P̃t−1(dxt−1)QK(xt−1, duK).

• ξtL to be R(µt⊗µL, (P̃t−1⊗QK) ◦ f−1
K ), the restriction of the product reference measure on Xt×UL to the support

of the K proposal.

Theorem 1. Let (K,L) be an SMCP3 move from P̃t−1 to P̃t. Then ξtL ≪ ξtK ◦ f
−1
K . If (x,w) is properly weighted for

P̃t−1, then letting uK ∼ QK(x→ ·), and (x′, uL) = fK(x, uK), the pair (x′, ŵ · w) is properly weighted for P̃t, where

ŵ =
p̃t(x

′)qL(x
′ → uL)

p̃t−1(x)qK(x→ uK)
· dξtL
d(ξtK ◦ f

−1
K )

(x′, uL).

We can also give a more precise statement of the local optimality result:

Proposition 1. Let ν = (P̃t−1⊗QKt
)◦fKt

−1. Then if QLt
is such that ν = (ν ◦π−1

1 )⊗QLt
, then QLt

is locally optimal,
in that it minimizes the variance of the incremental weight ŵ.

In our development from Section 4, we take UK = T, the space of program traces. We now define this object more
precisely.

For ease of presentation, we assume Gen has just a handful of basic value types over which primitive distributions are
defined: the reals R, the natural numbers N, and the Booleans B. For each such type τ , we choose a measure space
(Vτ ,Vτ , µτ ) of values, where µτ is a reference measure. For the reals, we choose µR = Λ (the Lebesgue measure), and for
discrete types we choose the counting measure. We let K denote a countable set of names for random variables (e.g., the
strings). Every execution of a program encounters some set of sampling statements, each with a name and a distribution
over some type, and we call these paths trace shapes:

Definition 8. A trace shape s ∈ S is a finite set of entries (k, τ), such that k ∈ K is a name (and no two entries share the
same name), and τ is a type.

A trace is a trace shape, together with its values:

Definition 9. A trace t ∈ T is a trace shape s and a tuple v ∈×(k,τ)∈s
Vτ , with one value for each name in s.

We equip T with the disjoint union σ-algebra, where the union is taken over the countable set of trace shapes, and each
element of the union is a product space×(k,τ)∈s

Vτ . For each trace shape s, we can define the product reference measure
µs =

⊗
(k,τ)∈s µτ . Then define reference measure µT over all traces as

µT(B) =
∑
s∈S

µs({v | (s,v) ∈ B}).

For any Gen program P , the kernel QP : A⇝ T has a density with respect to µT.

The formal version of Theorem 2 from the main paper is stated and proved in Appx. D.

B Proof of Theorem 1

Lemma 1. Let P and Q be probability measures on spaces X and Y respectively. Let Q̃ = ZQ · Q and P̃ = ZP · P
denote unnormalized versions of these measures, with densities p̃ and q̃ with respect to reference measures µX and µY .
Let S = Q ◦ f−1 for some measurable bijection f : X → Y , and suppose that P̃ is absolutely continuous with respect to
S. Then (y, w) is properly weighted for ZP

ZQ
P , where y = f(x), x ∼ Q, and w = p̃(y)

q̃(x) ·
dR(µY ,S)

d(R(µX ,Q)◦f−1) (y).
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Proof. Let x ∼ Q and y = f(x). We note:

dP

dS
(y) =

dP

dR(µY , S)
(y) · dR(µY , S)

dS
(y) (Radon-Nikodym chain rule)

=
p̃(y)

ZP
· dR(µY , S)

d(R(µX , Q) ◦ f−1)
(y) · d(R(µX , Q) ◦ f−1)

d(Q ◦ f−1)
(y) (density of P , Radon-Nikodym chain rule)

=
p̃(y)

ZP
· dR(µY , S)

d(R(µX , Q) ◦ f−1)
(y) · dR(µX , Q)

dQ
(f−1(y)) (pushforward by measurable bijection)

=
p̃(y)

ZP
· dR(µY , S)

d(R(µX , Q) ◦ f−1)
(y) · ZQ

q̃(x)
(density of Q, x = f−1(y))

=
ZQ

ZP
· w. (definition of w)

On the first line, we use the fact that since P is absolutely continuous with respect to both µY and S, it is absolutely
continuous with respect to R(µY , S). On the second line, we use the fact that since S ≪ µX ◦ f−1 and S ≪ Q ◦ f−1,
S ≪ (R(µX , Q) ◦ f−1), and therefore R(µY , S)≪ S ≪ (R(µX , Q) ◦ f−1).

Multiplying by ZP

ZQ
on each side, we have that w = ZP

ZQ

dP
dS (y), so for any measurable g : Y → R≥0, we have E[wg(y)] =∫

ZP

ZQ

dP
dS (y)g(y)S(dy) =

∫
g(y)(ZP

ZQ
P )(dy). This is precisely the criterion for (y, w) to be properly weighted for ZP

ZQ
P .

Theorem 1. Let (K,L) be an SMCP3 move from P̃t−1 to P̃t. If (x,w) is properly weighted for P̃t−1, then letting
uK ∼ QK(x→ ·), and (x′, uL) = fK(x, uK), the pair (x′, ŵ · w) is properly weighted for P̃t, where

ŵ =
p̃t(x

′)qL(x
′ → uL)

p̃t−1(x)qK(x→ uK)
·

dR(µt ⊗ µL, (P̃t−1 ⊗QK) ◦ f−1
K )

d(R(µt−1 ⊗ µK , P̃t−1 ⊗QK) ◦ f−1
K )

(x′, uL).

Proof. We apply Lemma 1, with X := Xt−1 × UK , Y := Xt × ULt
, f := fK , P̃ := P̃t ⊗ QL, and Q̃ := P̃t−1 ⊗ QK .

This tells us that for all measurable g : Xt × UL → R≥0, Ex∼Pt−1,uK∼QK
[ŵ · g(fK(x, uK))] =

∫ ZPt

ZPt−1
g(x′, uL)(Pt ⊗

QL)(d(x
′, uL)). In particular, for all h : Xt → R≥0, we can take g(x′, uL) = h(x′), and get that Ex∼Pt−1,uK∼QK

[ŵ ·
h(π1(fK(x, uK)))] =

∫ ZPt

ZPt−1
h(x′)Pt(dx

′).

We now apply the assumption that (x,w) is properly weighted for P̃t−1 = ZPt−1
Pt−1 to rewrite the expectation w.r.t.

Pt−1 as an expectation w.r.t. the pair (x,w):

∫
ZPt

ZPt−1

h(x′)Pt(dx
′) = Ex∼Pt−1,uK∼QK

[ŵ ·h(π1(fK(x, uK)))] = E(x,w)[
1

ZPt−1

·w ·EuK∼QK
[ŵ ·h(π1(fK(x, uK)))]].

By linearity of expectation, we can rewrite to get:

1

ZPt−1

∫
ZPt

h(x′)Pt(dx
′) =

1

ZPt−1

E[w · ŵ · h(π1(fK(x, uK)))].

Canceling the 1
ZPt−1

and rewriting ZPtPt as P̃t, we get the desired equation, that E[w · ŵ · h(x′)] =
∫
h(x′)P̃t(dx

′).

C Proof of SMCP3 Convergence

C.1 SMCP3 moves define Feynman Kac models

To reuse standard SMC convergence arguments from the literature, like Proposition 2, we first prove that Algorithm 1
implements SMC for a certain Feynman-Kac model. We first define Feynman-Kac models, following Chopin et al. (2020),
but using slightly different notation and terminology for consistency with this paper.

Definition 10 (Feynman-Kac model.). A Feynman-Kac model is a 4-tuple (Q1, (Qt)
T
t=2, G1, (G

T
t=t)), where
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1. Q1 is a probability measure on a measurable space X1

2. Qt : Xt−1 → Xt is a kernel between 2 measurable spaces

3. G1 : X1 → R≥0 is a measurable “potential” function on X1

4. Gt : Xt−1 ×Xt → R≥0 is a measurable “potential” function on measurable product space Xt−1 ×Xt

This model is said to target the sequence of measures (Pt)
T
t=1 on (Xt)

T
t=1, where for any measurable A ⊆ X1,

P1(A) =

∫
A

G1(x1)Q1(dx1) (1)

and for any t > 1, for any measurable A ⊆ Xt,

Pt(A) =

∫
Xt−1

∫
A

Gt(xt−1, xt)Qt(xt−1 → dxt)Pt−1(dxt−1). (2)

Note that in the definition of a Feynman-Kac model from Chopin et al. (2020), each space Xt must be the same space
X . This restriction is immaterial because given any Feynman-Kac model defined as above, we can obtain a Feynman-Kac
model under the definition from Chopin et al. (2020) by taking X = ⊕T

t=1Xt, and extending Q1 and G1 and each Qt and
Gt to measures/kernels/functions on this full space. Note also that what we call Q1 and Qt, Chopin et al. (2020) calls M0

and Mt−1, and what we call Pt, Chopin et al. (2020) calls Qt−1.

Theorem 3 (The Feynman-Kac model yielded by SMCP3). Consider any sequence (P̃t)
T
t=1 of finite measures on mea-

surable spaces X1, . . . , XT admitting densities p̃t w.r.t base measures µt on each Xt. Let Q1 be a measure on X1 s.t.
P̃1 << Q1, admitting density q1 w.r.t. µ1. Let (Kt, Lt)

T
t=2 be a sequence s.t. (Kt, Lt) is an SMCP3 move from P̃t−1 to

P̃t (Def. 3), where Kt = (UKt
, QKt

, fKt
) and Lt = (ULt

, QLt
, fLt

), and where QKt
and QLt

admit densities qKt
and

qLt
w.r.t. measures µKt

and µLt
.

Then there exists a Feynman-Kac model (Q1, (Qt)
T
t=2, G1, (G

T
t=t) targetting the sequence (Pt)

T
t=1, where P1 = P̃1 and

∀t > 1,Pt = P̃t ⊗QLt
. In particular, one such Feynman-Kac model is the one with components as follows:

1. Q1 = Q1

2. Q2(x1 → A) = Q̄2(x1 → A) and ∀t > 2, Qt((xt−1, ut−1)→ A) = Q̄t(xt−1 → A)

3. G1(x1) = p̃1(x1)/q1(x1)

4. G2(x1, (x2, uL2)) = g2(x1, (x2, uL2)) and ∀t > 2, Gt((xt−1, uLt−1), (xt, uLt)) = gt(xt−1, (xt, uLt))

In the above, Q̄t(xt−1 → ·) is the kernel from Xt−1 → Xt × ULt implemented by sampling uKt ∼ QKt(xt−1 → ·) then
running fKt

,

Q̄t(xt−1 → A) =

∫
UKt

1fKt (xt−1,uKt )∈AQKt
(xt−1 → duKt

),

and gt : Xt−1 × ULt
→ R≥0 is the function yielding the importance-weight update from Theorem 1 for the tth SMCP3

move,

gt(x, (x
′, uL)) =

p̃t(x
′)qLt(x

′ → uL)

p̃t−1(x)qKt
(x→ uK)

· d(µt ⊗ µLt
)

d((µt−1 ⊗ µKt
) ◦ f−1

Kt
)
(x′, uL) where ( , uK) = fLt

(x′, uL).

Proof. Equation 1 certainly holds since Q1 and G1 implement an importance sampler for P̃1. Thus all we need is to verify
that Equation 2 holds. Consider any measurable A ⊆ Xt × ULt

. The target measure on this set is

Pt(A) = (P̃t ⊗QLt
)(A) :=

∫
Xt

∫
ULt

1(xt,uLt )∈AQLt
(xt → duLt

)P̃t(dxt)
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Writing P̄t(A) to refer to the R.H.S. of Eq. 2, so our goal is to show Pt = P̄t, we have

P̄t(A) =

∫
Xt−1×ULt−1

∫
A

gt(xt−1, (xt, uLt
))Q̄t(xt−1 → dxt, duLt

)Pt−1(dxt−1, duLt−1
)

=

∫
Xt−1

∫
ULt−1

∫
A

gt(xt−1, (xt, uLt
))Q̄t(xt−1 → dxt, duLt

)QLt−1
(xt−1 → duLt−1

)P̃t−1(dxt−1)

=

∫
Xt−1

∫
A

gt(xt−1, (xt, uLt
))Q̄t(xt−1 → dxt, duLt

)P̃t−1(dxt−1)

=

∫
Xt−1

∫
UKt

1fKt (xt−1,uKt )∈Agt(xt−1, fKt
(xt−1, uKt

))p̃t−1(xt−1)QKt
(xt−1 → duKt

)µt−1(dxt−1)

=

∫
Xt−1

∫
UKt

1fKt (xt−1,uKt )∈Agt(xt−1, fKt
(xt−1, uKt

))qKt
(xt−1 → uKt

)p̃t−1(xt−1)µKt
(duKt

)µt−1(dxt−1)

=

∫
f−1
Kt

(A)

d(µt ⊗ µLt
)

d((µt−1 ⊗ µKt) ◦ f−1
Kt

)
(fKt(xt−1, uKt))(µt−1 ⊗ µKt)(dxt−1, duKt)

· qKt
(xt−1 → uKt

)p̃t−1(xt−1) ·
p̃t(xt)qLt(xt → uLt)

qKt
(xt−1 → uKt

)p̃t−1(xt−1)
where (xt, uLt

) = fKt
(xt−1, uKt

)

=

∫
A

d(µt ⊗ µLt
)

d((µt−1 ⊗ µKt
) ◦ f−1

Kt
)
(xt, uLt

)((µt−1 ⊗ µKt
) ◦ f−1

Kt
)(dxt, duLt

) · p̃t(xt)qLt
(xt → uLt

)

=

∫
A

p̃t(xt)qLt(xt → uLt)d(µt ⊗ µLt)(dxt, duLt)

=

∫
Xt

∫
ULt

1(xt,uLt )∈AQLt
(xt → duLt

)P̃t(dxt)

= Pt(A)

C.2 Proof of Proposition 2

Proposition 2. For any t ∈ {1, . . . , T}, let {(wt
n, x

t
n)}∞n=1 be the particle cloud generated by Alg. 1 at timestep t. If P̃t,

Kt, Lt, and Q1 are such that the incremental weights ŵt
i in Alg. 1 are bounded above, then for any continuous, bounded

function φ : Xt → R, there exists σ s.t.

√
N

(
1

N

N∑
n=1

wt
nφ(x

t
n)−

∫
Xt

φ(x)P̃t(dx)

)
D→ N (0, σ)

as N →∞, where D→ is convergence in distribution.

Proof. Let un
Lt

denote the uL values generated for each particle at time t by Alg. 1. By Theorem 3 above and Proposition
11.2 in Chopin et al. (2020), for any SMCP3 algorithm in which the incremental importance weights are upper bounded at
each timestep, for any continuous function φ′ : Xt × ULt → R, for some σ > 0,

√
N

(
1

N

N∑
n=1

wt
nφ

′(xt
n, u

n
Lt
)−

∫
Xt

φ′(x, uLt
)(P̃t ⊗QLt

)(dx, du)

)
D→ N (0, σ)

All that remains is to observe that any continuous bounded φ : Xt → R can be extended to a continuous, bounded function
φ′ : Xt × ULt → R (by φ′(x, u) = φ(x)), and that∫

φ′(x, u)(P̃t ⊗QLt
)(dx, du) =

∫
φ(x)P̃t(dx).
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D Proof of Theorem 2

D.1 PAP functions

The statement of the Theorem includes the assumption that a certain function f is PAP, or piecewise-analytic-under-
analytic-partition. We first review the definition of PAP functions on Euclidean spaces from Lee et al. (2020), then use the
tools from Huot et al. (2023) to extend the definition to spaces of traces.
Definition 11. Let U ⊆ Rn and V ⊆ Rm. A function f : U → V is (real-)analytic at a point x ∈ U if it is smooth at x
and there exists an open neighborhood I of x on which f is equal to its Taylor series. If f is analytic at every point in its
domain U , then we say f is a (real-)analytic function.
Definition 12. An analytic set A ⊆ Rn is a set of the form {x ∈ U | f1(x) ≥ 0 ∧ · · · ∧ fk(x) ≥ 0}, where U is an open
subset of Rn, k ≥ 0 is a finite natural number, and each fi : U → R is analytic on U .
Definition 13. Let U ⊆ Rn and V ⊆ Rm. A partial function f : U ⇀ V is piecewise analytic under analytic partition, or
PAP, if there exists a countable family {(Ai, Ui, fi)}i∈I , where:

• each Ui is an open subset of U ,

• each Ai is an analytic subset of Ui,

• the Ai are pairwise disjoint and form a partition of the domain of f ,

• each fi : Ui → Rm is analytic, and

• for each i, for all x ∈ Ai, f(x) = fi(x).

Remark 2. If we view the Booleans B as a subset {0, 1} of R, and similarly view the naturals N and integers Z as subsets
of R, this definition can be applied directly to functions that accept and return vectors holding both continuous and discrete
values. (These functions are not defined when their discrete inputs are set to “invalid” values, but Definition 13 applies
to partial functions, so this is not an issue.) Using Definition 13, we can characterize which of these functions on hybrid
discrete-continuous spaces are PAP. Let DI be the discrete indices of the input vector u and DO be the discrete indices of
the output vector v. For any assignment vD to the discrete indices of the output vector, let UvD

⊆ U to be the preimage
f−1({v ∈ V | v[DO] = vD}). Then, for each assignment uD to the discrete components of the input vector u, we can
consider the restriction fuD

vD
of f to {u ∈ UvD

| u[DI ] = uD}. Because the discrete inputs and outputs are fixed for every
vector in its domain, fuD

vD
can really be viewed as a function only of the continuous components in the input vector, into

the continuous part of the output vector. Unfolding the definition of PAP, it can be shown that f is PAP if and only if, for
every uD and vD, fuD

vD
is PAP.

The observations in Remark 2 can be generalized to support arbitrary countable unions of Euclidean spaces:
Definition 14. Let J,K be countable sets and let Xj ⊆ Rnj for each j ∈ J ∪ K. A partial function f : ⊔j∈JXj ⇀
⊔k∈KXk is PAP if, for each j ∈ J and k ∈ K, the function fj,k : {x ∈ Xj | ∃y ∈ Xk.f((j, x)) = (k, y)} → Xk mapping
x to π2(f((j, x))) is PAP.

Recall that T = ⊔s∈S(×(k,τ)∈s
Vτ ). Since each Vτ ⊆ R, we can view T as a particular subset of ⊔s∈SR|s|, and similarly

T × T as a subset of ⊔(s1,s2)∈S×SR|s1|+|s2|. Supposing U and V are subsets of T × T, a function f : U → V can be
viewed as a partial function f̂ : ⊔(s1,s2)∈S×SR|s1|+|s2| ⇀ ⊔(s1,s2)∈S×SR|s1|+|s2|, and we can apply our definitions above
to establish whether it is PAP.
Remark 3. We now work out the implications of this definition for functions f that accept and return pairs of traces. The
“discrete data” tD of a pair of traces t = (t1, t2) is a pair of trace shapes (s1, s2) and a pair of assignments (v1D, v2D) to
just the discrete parts of each trace. Fixing tD, the continuous data of the pair is just a vector of reals, concatenating the
real values from the first trace to the real values from the second trace. Write nC(tD) for the total number of continuous
values in the trace pair. For each possible input discrete data tID and output discrete data tOD, there is a partial function

f
tID
tOD

: RnC(tID) ⇀ RnC(tOD) that accepts as input the continuous data for an input trace pair (whose discrete data is tID),

and if f(tI) matches the output discrete data tOD, outputs the continuous data of f(tI) (otherwise, it is undefined). Then f

is PAP if each of these partial functions f tID
tOD

is PAP.

Remark 4. Suppose U and V are subsets of T × T and f : U → V is a PAP bijection, with PAP inverse f−1 : V → U .
Then each f

tID
tOD

is PAP and is the inverse of (f−1)
tOD
tID

.
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D.2 Change-of-variables for PAP bijections on subsets of T× T.

Lemma 2. Let µ, ν be measures over X and Y , and f : X → Y a measurable bijection, such that ν ≪ (µ ◦ f−1). Let
{Ai}i∈I be a countable family of subsets of X such that X \ ∪i∈IAi has µ-measure-zero. Further, let g : Y → R≥0 be
such that for each i, for all y ∈ f(Ai), g(y) = dνi

d(µi◦f−1
i )

(y), where µi is the restriction of µ to Ai, νi is the restriction of

ν to f(Ai), and fi : Ai → f(Ai) is the restriction of f to Ai. Then g is a Radon-Nikodym derivative of ν with respect to
µ ◦ f−1.

Theorem 2. Let T2
1 and T2

2 be measurable subsets of T× T, and let µ1 and µ2 be restrictions of µT ⊗ µT to these subsets.
Suppose f : T2

1 → T2
2 is a PAP bijection and that µ2 is absolutely continuous with respect to µ1 ◦ f−1. Then

dµ2

d(µ1 ◦ f−1)
(f(τ1, τ2)) = |det(Jfτ1,τ2)(ρ(τ1) ++ ρ(τ2))|,

where ρ : T → ⊔d∈NRd extracts all the real-valued entries in a trace into a vector, ϕτ : R|ρ(τ)| → T replaces the real
entries in τ with values from a vector, and fτ1,τ2 : R|ρ(τ1)|+|ρ(τ2)| → R|ρ(τ1)|+|ρ(τ2)| accepts as input the concatenation
of v1 ∈ R|ρ(τ1)| and v2 ∈ R|ρ(τ2)|, computes τ ′1, τ

′
2 = f(ϕτ1(v1), ϕτ2(v2)), and then returns the vector concatenation

ρ(τ ′1) ++ ρ(τ ′2).

Proof. We will use Lemma 2 to carve T2
1 into pieces, and prove the result separately for each piece.

For each tID, tOD, we have from Remark 4 that f tID
tOD

is a PAP bijection from U ⊆ Rn → V ⊆ Rm, for some n and some m.
Then there is some partition of U into analytic subsets Aj of Rn; let J(tID,tOD) be the index set of this partition. Then let

I = {(tID, tOD, j) | j ∈ J(tID,tOD) ∧Λ(A
(tOD,tID)
j ) > 0}, and define T2

(tID,tOD,j)
the set of pairs of traces with discrete data tID

and continuous data in A
(tOD,tID)
j . By Lemma 2, it suffices to show that for each (tID, tOD, j),

dµ2 |f(T2

(tI
D

,tO
D

,j)
)

d(µ1 |T2

(tI
D

,tO
D

,j)

◦f−1
(tID,tOD,j)

)
(f(t1, t2)) = |det(Jft1,t2(ρ(t1) ++ ρ(t2)))|.

First, note that restricted to T2
(tID,tOD,j)

, g(t1, t2) := ρ(t1) ++ ρ(t2) is a bijection: the discrete data of (t1, t2) is fixed to tID,
and so even though g deletes this information by extracting only the continuous values from the traces, it is injective and
can be inverted by reattaching the discrete data tID. Indeed, for any (t1, t2) with discrete data tID, ft1,t2 = g ◦ f ◦ g−1. So
we have:

dµ2 |f(T2

(tI
D

,tO
D

,j)
)

d(µ1 |T2

(tI
D

,tO
D

,j)

◦f−1
(tID,tOD,j)

)
(f(t1, t2)) =

d(µ2 |f(T2

(tI
D

,tO
D

,j)
) ◦g−1)

d(µ1 |T2

(tI
D

,tO
D

,j)

◦f−1
(tID,tOD,j)

◦ g−1)
(g(f(t1, t2)))

=

d(µ2 |f(T2

(tI
D

,tO
D

,j)
) ◦g−1)

d((Λ ◦ (g−1)−1) ◦ f−1
(tID,tOD,j)

◦ g−1)
(g(f(t1, t2)))

=
dΛ

d(Λ ◦ (ft1,t2 |g(T2

(tI
D

,tO
D

,j)
))

−1)
(ft1,t2(g(t1, t2))),

where the first line uses the fact that g is a bijection, the second and third use the fact that µ1 ◦ (g−1)−1 is the Lebesgue
measure on the image (under g) of the support of µ1,11 and the third also uses the fact that ft1,t2 = g ◦ f ◦ g−1. Since f
is PAP, ft1,t2 |g(T2

(tI
D

,tO
D

,j)
) is real-analytic, and we can apply the standard change-of-variables formula for pushforwards of

the Lebesgue measure by differentiable bijections, yielding the desired Jacobian determinant.

11This is true because we defined µR := Λ when defining the reference measure µT for traces.
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E PPL Automation

E.1 Automation of Standard PPL Operations

Sampling and evaluating densities of traces. The Gen probabilistic programming system (Cusumano-Towner et al.,
2019) automatically generates procedures for sampling traces, evaluating densities of traces, and computing return values
from traces. The density computed by Gen is precisely the density of the sampling distribution over traces induced by
program P , with respect to the reference measure µT. Roughly, these procedures work by overriding the behavior of
{name} ∼ distribution statements:

• SAMPLE-TRACE(P, a): Initialize storage for an empty trace τ , and run the program P with arguments a. At each
{name} ∼ distribution statement, draw a sample from the distribution and record it (and its type) in the trace
τ under name. When the program is finished, return the trace τ .

• EVALUATE-LOGPDF(P, a, τ): Given a program P with arguments a, and a trace τ sampled from the program
with those arguments, initialize a weight to 1. At each {name} ∼ distribution statement, lookup the value v
associated with the key name in the trace τ , and multiply the weight by the density of distribution at v. If any
name is missing, or if after finishing execution the trace contains unvisited names, return 0; otherwise, return the
final weight.

• COMPUTE-RETVAL(P, a, τ): Given a program P with arguments a, and a trace τ sampled from the program with
those arguments, run the program but instead of sampling, use the values already in the trace (as for density evalua-
tion). Once finished executing, return what the program returns.

E.2 Fuzz-Testing the Conditions of SMCP3 Moves

Users of SMCP3 specify SMCP3 moves as pairs of K and L probabilistic programs, subject to certain conditions (Defi-
nition 3). These conditions do not hold trivially of any proposal programs the user could write, so users may implement
buggy proposals that fail to satisfy them. To aid users in catching this sort of bug, we present two automated tests, which
fail with positive probability if and only if the conditions of Definition 3 are not satisfied. By running the tests repeatedly,
users can become increasingly confident in the soundness of their proposals.

Testing absolute continuity (“Full Support” condition). To test the first criterion, absolute continuity, we repeatedly:

1. Generate a random trace τ tP from the support of P̃t.
Gen’s GENERATE method can be run on the model program P , with argument t and observation trace yt, to perform
a constrained execution of P , sampling variables freely if they do not appear in yt, and otherwise constraining the
variables to the values they take in yt.

The effect is to produce a trace τ tP of P (t → ·); the guarantee that Gen makes is that the posterior Pyt is absolutely
continuous with respect to the distribution that GENERATE induces. This means that we can perform rejection sam-
pling with GENERATE as the proposal until we find a τ tP that has positive unnormalized density p̃t(τ

t
P ). (In general

this will only take one sample, but may take longer, e.g. if the addresses in yt do not appear in every execution.)

2. Run the L program to obtain corresponding traces τ t−1
P and τK for P̃t−1 and K.

We generate τL from SAMPLE-TRACE(L, τ tP ), and then set (τ t−1
P , τK) to COMPUTE-RETVAL(L, τ tP , τL). This

yields L’s guess at how the trace τ tP could be proposed: what would the previous particle have been, and what would
K have done to it?

3. Check that τ t−1
P and τK have positive density.

Run EVALUATE-LOGPDF(P, t−1, τ t−1
P ) and EVALUATE-LOGPDF(K, τ t−1

P , τK), and fail if either call returns−∞
(indicating that the density is 0).

Together, steps 1 and 2 have some chance of generating any pair of traces with positive density p̃t(τ
t
P )qL(τ

t
P → τL). Then

step 3 checks to see whether the “full support” condition is satisfied for those traces.

Testing that fK and fL are inverses almost everywhere. To test this criterion, we repeatedly generate inputs to fK and
check that they ’round-trip’:
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1. Generate a random trace τ t−1
P from the support of P̃t−1.

We use the same strategy as in the previous test, rejection sampling with GENERATE as a proposal.

2. Obtain a trace τK of the K program.
We generate τK from SAMPLE-TRACE(K, τ t−1

P ).

3. Check consistency of fK and fL.
Run COMPUTE-RETVAL(K, τ t−1

P , τK) to obtain (τ tP , τL), then run COMPUTE-RETVAL(L, τ tP , τL) and check that
it returns exactly (τ t−1

P , τK). Fail if not.

E.3 Efficient Implementation of SMCP3 Updates

The automated SMPC3 update presented in Algorithm 2 has sub-optimal time complexity in cases where evaluating the
density of the old and new model traces at steps t − 1 and t repeats execution of the same code in the model program
P . For example, this occurs when P represents a time series model such as the dynamics model in Figure 2(a), where the
argument t denotes the number of timesteps that the model is unrolled for. In such cases, Algorithm 2 will require executing
EVALUATE-LOGPDF on program P twice, first for t − 1 timesteps, then for t timesteps, leading to a time complexity of
O(t) for a single SMCP3 update, and O(T 2) complexity for the full SMCP3 algorithm (Algorithm 1).

To achieve asymptotic speed-ups over this naive implementation, Gen supports incremental computation that ex-
ploits the cancellation of density ratios to compute the desired incremental importance weights. This is provided
by the UPDATE-TRACE procedure described below, which performs incremental computation for models written us-
ing Gen’s modeling combinators or static modeling language (Cusumano-Towner et al., 2019). In addition, Gen
provides a SAMPLE-AND-EVALUATE-LOGPDF procedure, which avoids the need to run SAMPLE-TRACE and
EVALUATE-LOGPDF separately, leading to further (constant factor) speed-ups:

• UPDATE-TRACE(P, a′, τ,∆τ): Given a program P with updated arguments a′, a trace τ sampled from P under the
previous arguments a, and a partial trace ∆τ that specifies the values of new or updated random variables, create a
fresh copy of τ called τ ′ (the updated trace), and initialize an incremental weight w to 1. Identify (via static analysis,
etc.) the set of computation paths ∆P that either: (i) would be executed if P were run with arguments a′ instead of
the previous arguments a; (ii) need to be executed to ensure all random variables in ∆τ are sampled (it is an error if
this is not possible). Execute only those computation paths.

At each {name} ∼ distribution statement, check that name is present in either ∆τ or τ . If not, this is an error.
If present in ∆τ , store the corresponding value v′ from ∆τ in τ ′, replacing the previous value v copied from τ if any.
Multiply the weight w by the density of distribution at v′, and if a previous value v existed, divide w by the
density of distribution at v. After execution of all incremental computation paths ∆P , return the updated trace
τ ′, and the incremental weight w. The trace τ ′ = τ ⊕∆τ is equal to the return value of SAMPLE-TRACE(P, a′), and
w is exactly equal to EVALUATE-LOGPDF(P, a′, τ ′)− EVALUATE-LOGPDF(P, a, τ).

• SAMPLE-AND-EVALUATE-LOGPDF(P, a): Initialize storage for an empty trace, set weight w to 1, and run the
program P with arguments a. At each {name} ∼ distribution statement, draw a sample v from the distribution
and record it (and its type) in a trace under name. Multiply the weight w by the density of distribution at the
sampled value v. When the program is finished, return the trace and the weight.

Using these two procedures, we can implement an efficient version of the SMCP3 update, shown in Algorithm 4. Several
key differences are as follows:

• The update takes in a trace of additional observations ∆yt, where yt = yt−1 ⊕ ∆yt (i.e. observations in ∆yt are
either added to yt−1 or replace previous observations).12

• Instead of separately sampling and evaluating the density of a trace uKt
of the forward program Kt, we do this

simultaneously using SAMPLE-AND-EVALUATE-LOGPDF.

• The first return value of Kt (and Lt) is allowed to be a partial trace ∆x, which specifies the random variables that
should be added to or replaced in the original trace x s.t. the new trace x′ = x⊕∆x⊕∆yt.

12Generalizations to both Algorithm 4 and UPDATE-TRACE are possible for the case where observations are deleted rather than
added, but care must be taken to ensure support matching, and other subtleties apply.
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Algorithm 4 Efficient implementation of automated SMCP3 update
Require: model Gen program P
Require: additional observations ∆yt = yt ⊖ yt−1

Require: (x,w) properly wtd. for P̃ yt−1(t− 1→ ·)
Require: Gen programs Kt, Lt specifying move
Ensure: (x′, w′) properly weighted for P̃ yt(t→ ·)

1: (uKt
, log qKt

)← SAMPLE-AND-EVALUATE-LOGPDF(Kt, x)
2: ((∆x, uLt

), Ĵ)← AD(COMPUTE-RETVAL(Kt, x, uKt
))

3: (x′, log p̃t

p̃t−1
)← UPDATE-TRACE(P, t, x,∆x⊕ yt)

4: log qLt ← EVALUATE-LOGPDF(Lt, x
′, uLt)

5: log r ← log p̃t

p̃t−1
+ log qLt − log qKt

6: logw′ ← logw + log r + log |det Ĵ |
7: return (x′, logw′)

• Rather than running EVALUATE-LOGPDF on x and x′ separately, we compute the incremental weight log p̃t

p̃t−1
and

new trace x′ using UPDATE-TRACE.

Due to UPDATE-TRACE, SMCP3 using Algorithm 4 is asymptotically more efficient than using Algorithm 2 in many
cases. For example, in the time series model from Figure 2(a) or the mixture model in Section 5.2, UPDATE-TRACE
executes only the code required to evaluate the density of the newest timestep or observation, which takes O(1) time. As a
result, the full SMCP3 algorithm (Algorithm 1) has O(T ) instead of O(T 2) time complexity.

F Experimental Details

All experiments were run on a commodity laptop with 32GB of RAM, using 8 cores. Every experiment presented in Sec. 5
ran in under 10 minutes on our hardware.

F.1 Online inference in state-space models

F.1.1 Inference in a state-space model with a differentiable likelihood

This model, and the baseline inference algorithms we compare against, are described in section 5.1.

SMCP3 inference algorithm. Our SMCP3 inference algorithm for this model is illustrated Fig. 4, and defined in Gen
pseudocode in Fig. 2. The space UKt of auxiliary randomness is Rd × Rd and the space ULt is Rd. Algorithm 5 gives
the K and L proposals for this algorithm in mathematical notation. Given particle z1:t−1, the K kernel first samples an
auxiliary v from the dynamics prior, then samples zt via a step of Langevin ascent starting from v. It returns the updated
particle z1:t, and the auxiliary variable v. The L kernel generates v ∼ P (·; zt−1) (ignoring zt).

Algorithm 5 SMCP3 kernels for Langevin particle extension.
Require: Langevin ascent step-size σ.
Require: Observation trajectory y1:t.

1: procedure K(z1:t−1)
2: v ∼ Pdyn(· | zt−1) ▷ Sample an auxiliary position from the dynamics prior
3: ▷ Sample zt via a step of Langevin ascent, starting from v.
4: zt ∼ N (v + σ2 ∂ logP (Zt=v,yt|zt−1)

∂v ),
√
2σI)

5: return (z1:t,v)
6: end procedure
7: procedure L(z1:t)
8: v ∼ P (Zt = ·|zt−1)
9: return (z1:t−1, (v, zt))

10: end procedure
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Experiment details. Fig. 3 shows an artificial 1-D observation trajectory generated by adding N (0, 0.8) noise to each
position in the hand-written vector [[0, 3, 6, 9, 12, 9, 12, 16, 18, 18, 20, 17]. For this trajectory, Fig. 3 shows the 3-σ band of
the exact filtering posterior distribution over latent states at each timestep (obtained via Kalman filtering), and the values
of a single particle over time from our SMCP3 algorithm. The bottom two panels compare SMCP3 against two baselines:
a bootstrap particle filter, and a bootstrap filter with MALA rejuvenation on zt at each step t. All algorithms were run with
N = 5 particles. For the SMCP3 algorithm and MALA, we use Langevin-ascent step size σ = 0.3. Resampling happens
when ESS drops below N/2.

Fig. 5 shows 200 particles generated at t = 1 by each inference algorithm, in 1-D and given y1 = 5. Each particle is
rendered at its z1 position on the x axis, and on the y axis, at a height so that it lands on the posterior density curve for
P (z1|y1).

Table 1 reports results of each algorithm on a 100-dimensional dataset, generated from the model, with 50 particles.

F.1.2 Inference in a state-space model with a rendering-based likelihood

Figure 6 shows inference results in a simple state-space model for tracking 3D objects from depth data, comparing an
SMCP3 algorithm (which is a variant of the algorithm from the previous section, but replacing the ULA step with a grid-
enumeration step because the likelihood is non-differentiable) to the bootstrap particle filter.

Model. Our motion model is used for tracking a single degree of freedom of the position of a cube in 3D space. The
position of the cube is (xt, 0, 0) where zt is a latent state that evolves according to Gaussian random walk dynamics,
z1 = 0; ∀t > 1, zt ∼ N (zt−1, 0.7). The observed data yt is a “point-cloud” of 200 3D positions detected by a depth-
camera (so yt ∈ R3×200). The likelihood P (yt|zt) is defined using the following generative process. First, a deterministic
renderer traces M rays from the camera to the scene, and records the coordinates at which these rays first intersect the cube,
producing a point cloud qt = [q1t , . . . , q

M
t ] ∈ R3×M . Then, the observed point-cloud yt is generated from the following

Gaussian mixture model:

p(yt|q1t , . . . , qMt ) =

200∏
j=1

M∑
i=1

1

M
N (yjt ; q

i
t, 10

−2I)

where yjt denotes the j-th column of yt.

SMCP3 inference algorithm. Alg. 6 gives the K and L proposals used by our SMCP3 algorithm. The K kernel first
proposes a position v from the dynamics model, then chooses one of a finite number of points on a grid centered at v as the
value for zt; the L kernel fills in the value of v by enumerating each one which could have led to K returning zt.

Experiment details. Figure 6 shows frames of a real RGB-D video in which a box is sliding across the floor, and inferred
latent states from a simple enumeration-based inference algorithm, to illustrate the setup using real data. The plot in figure
6 is generated using a synthetic observation trajectory generated from the model prior. The cube side length was set to
0.5 units and the camera was positioned at (4, 0, 1.4) and oriented toward the origin. The plot shows log marginal data
likelihood results averaged across 10 independent inference runs from the baseline and the SMCP3 inference algorithm.

F.2 Online inference in mixture models

We first give further details on our DPMM model, the baseline inference algorithms, and the details of the experiments
showcased in Sec. 5.2. We then detail the SMCP3 inference algorithm.

F.2.1 Model, Baselines, and Experiment Details

Section 5.2 describes the DPMM we use for online clustering. It has two parameters: (1) the parameter αD of the Dirichlet
process, and (2) the exchangeable likelihood F , which determines the distribution over data produced by a single cluster.
Specifically, for any F , there is a measure space (V,V, µV ) of values, and F : ⊕n∈NV

n → R≥0 is the function s.t. F (v⃗)

is the joint probability density of vector v⃗ w.r.t. µ|v⃗|
V . (F restricted to the domain V n is a probability density over n-long

vectors; F is not a probability density over the whole space ⊕n∈NV
n.)
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Algorithm 6 SMCP3 kernels for enumeration-based particle extension.
Require: Grid step size ϵ and range N .
Require: Observation trajectory y1:t.

1: procedure K(z1:t−1)
2: v ∼ P (·; zt−1) ▷ Sample an auxiliary position from the dynamics prior
3: ▷ Enumerate over the grid, starting from v, and evaluate the probability of each state.
4: D ← {} ▷ Initialize score dictionary.
5: for i = −N, . . . , N do
6: zit ← v + iϵ ▷ Potential zt value in grid.
7: s← P (zit|zt−1)P (yt|zit) ▷ Joint probability score for this zt value.
8: D ← D ∪ {zit 7→ s}
9: end for

10: Sample zt ∼ PD, where PD is the distribution with PD(xt) ∝ D[xt].
11: return (z1:t, v)
12: end procedure
13: procedure L(z1:t)
14: D ← {} ▷ Initialize score dictionary.
15: for i = −N, . . . , N do
16: vi ← zt + iϵ ▷ Potential v value in grid.
17: s← P (vi|zt−1)
18: D ← D ∪ {vi 7→ s}
19: end for
20: Sample v ∼ PD, where PD is the distribution with PD(u) ∝ D[u].
21: return (z1:t−1, (v, zt))
22: end procedure

We run inference in an online manner, meaning that data is streamed into the inference algorithm over time, and after
seeing each subset y1:t of the data, the inference algorithm must output an approximation of P (Πt|y1:t), the posterior over
possible partitions of data-indices {1, . . . , t}, given the first t datapoints.

Mixture-model likelihoods. We use three different F likelihoods in our experiments, two for modeling real data (so
V = R, with the regular sigma-algebra and Lebesgue measure) and one for modeling string data (so V is the set of strings,
equipped with the discrete sigma algebra and counting measure).

The first data-likelihood, F1, models a Gaussian data-cluster with an unknown mean µ ∼ N (µ0, σ
2
0) and a known variance

σ2. For any vector y⃗,

F1(y⃗) =

∫
R

∏
y∈y⃗

N (y;µ, σ2)N (dµ;µ0, σ
2
0).

The second data-likelihood, F2, models a Gaussian data-cluster with an unknown mean µ and an unknown variance σ2.
Parameters αy, β, ξ, and κ are introduced to control the prior over the cluster mean and variance. For any vector y⃗,

F2(y⃗) =

∫
R

∫
R

∑
y∈y⃗

N (y⃗;µ, σ2)Γ(d(σ−2);αy, β)N (dµ; ξ, κ−2).

The third data-likelihood, F3, models a cluster of strings, by assuming there is some “ground-truth” string s∗, and every
string in the cluster is generated by applying a randomly-chosen number of “typos” to s∗. (As with the µ and σ parameters
above, the string s∗ is marginalized out in the likelihood function.) We use the exact likelihood defined in Lew et al. (2022)
Sec. 5.2, we refer the reader there for details.

Locally-optimal single-datapoint SMC inference. The first inference baseline we experiment is roughly analogous to
an optimal particle filter in a state-estimation application. This SMC algorithm uses the following proposal distribution
to update a particle Πt−1 (a partition of {1, . . . , t − 1}) to a partition Πt of {1, . . . , t}, given datapoint yt. The proposal
distribution either creates a new cluster containing only t, outputting Πt = Πt−1 ∪ {{t}}, or adds t to an existing C∗ ∈
Πt−1 outputting Πt = Πt−1 \ {C∗} ∪ {C∗ ∪ {t}}. This proposal Q chooses among these |Πt−1| + 1 options such that
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Q(Π) ∝ pt(Π, y1:t), where pt is the PDF of the probabilistic program defining the DPMM, given argument t, at partition
Π and data vector y1:t.

Resample-move inference algorithm. As a second baseline, we turn the locally-optimal single-datapoint SMC algorithm
into a resample-move algorithm using an MCMC kernel. The MCMC kernel is a split/merge kernel, that randomly selects
two “chaperone” datapoints Miller et al. (2015), and proposes a split (if they are in the same cluster) or a merge (if they
are in different clusters). To propose a split, a Gibbs scan on cluster assignments is performed, processing points in sorted
order to incorporate them into one of the two new clusters, seeded with the chaperones (this Gibbs scan is done identically
to in Qsplit in the SMCP3 algorithm described below). A Metropolis-Hastings correction is applied to ensure the kernel is
stationary.

SMCP3 inference algorithm. Our SMCP3 algorithm is fairly involved, so we devote a subsection (Sec. F.2.2) to it below.

Experiment details. Table 1 shows the results of mixture-model inference in a data-cleaning dataset of 1k strings from
Medicare records (Lew et al., 2021a).

To model the Medicare dataset, we used likelihood F3, and set αD = 1.0. Table 1 shows the results of each SMC algorithm
on this dataset, using 2 particles for each algorithm, with means and empirical variances taken over 2 SMC runs for the
SMCP3 algorith, and 5 runs for each baseline.

Figure 3 shows results from 10 10-particle SMC inference runs, using the locally-optimal single-datapoint SMC algorithm,
and our SMCP3 algorithm, on synthetically generated data, using likelihood F1. We generated the dataset shown in the
figure from the DPMM with αD = 1.0, using F1 with µ0 = 0, σ0 = 6, and σ = 1; we ran inference using αD = 1.0,
µ0 = 0, σ0 = 106, and σ = 1. Because we ran inference using a prior which expects clusters to be much farther away from
each other than they are in the presented dataset, on small subsets of the data (e.g. y1:10, rather than the full dataset y1:100),
it is more likely under the posterior that nearby clusters are explained as being a single data-cluster with some outliers.
However, as more data is observed, it becomes unlikely to have so many outliers, and hence becomes more likely that there
are two surprisingly-nearby clusters. Because the locally-optimal single-datapoint SMC algorithm cannot change which
datapoints are clustered together, it produces sub-optimal results on this data. This toy example is intended to illustrate this
failure mode —the locally optimal SMC algorithm labeling datapoints which should belong to a new cluster as outliers
from an existing cluster —which we also observe occurring in real datasets like the Medicare data. Because our SMCP3

algorithm is able to split existing clusters into two, it does not suffer from this failure mode.

All experiments are run using multinomial sampling, triggered whenever the effective sample size falls below 1/5 the
number of particles.

F.2.2 The SMCP3 inference algorithm

Our SMCP3 algorithm extends the above locally-optimal single-datapoint SMC move. Its K proposal first makes this
move, producing partition Π1

t ; in the case where this move outputs a partition assigning datapoint t to a new singleton
cluster, the K proposal terminates and outputs Πt = Π1

t . In the case where Π1
t was produced by adding t to an existing

cluster C∗, producing C ′
∗ = C∗ ∪{t}, the K proposal then chooses between 3 ways of producing a final state Πt from Π1

t :
(1) K may split the cluster C ′

∗ into two new clusters, (2) K may merge C ′
∗ into another cluster C ∈ Π1

t \ {C ′
∗}, or (3) K

may make no change, and output Π1
t . Our K only consider split moves in which the index t ends up in a cluster with at

least one other datapoint; if C ′
∗ only has 2 elements, split moves are impossible. K makes this decision between splitting,

merging, or staying, in the following manner.

Deciding whether to split, merge, or make no change. First, K enumerates every cluster C ∈ Π1
t \ {C ′

∗}, and for each
of these, computes sC = pt(Π

C
t , y1:t), where ΠC

t = Π1
t \ {C ′

∗, C} ∪ {C ′
∗ ∪ C} is the partition resulting from merging C ′

∗
with C. These scores give the joint PDF for the partitions resulting from each possible merge move. Second, K computes
s∗ = pt(Π

1
t , y1:t), the joint PDF for the partition resulting from making no change to the existing partition. Finally K

obtains an estimate ŝs of the total

ss =
∑

C′,C′′:C′∪C′′=C′
∗

pt(Π
C′,C′′

t , y1:t) where ΠC′,C′′

t = Π1
t \ {C ′

∗} ∪ {C ′, C ′′}.

This is the sum over every possible way of splitting C ′
∗ into two clusters C ′ and C ′′ of the joint PDF pt(Π

C′,C′′

t , y1:t) of the
partition ΠC′,C′′

t resulting from making this split. We describe our method of estimating ŝs below. The final decision of
whether to split C ′

∗, merge C ′
∗ with an existing cluster, or make no change to Π1

t , is made such that the probability of doing
some split move is proportional to ŝs, the probability of making no change is proportional to s∗, and the probability of
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merging with any particular cluster C is proportional to sC . (That is, this decision is made by sampling from a categorical
distribution over |Π1

t \ {C ′
∗}|+ 2 possibilities.)

Selecting a particular split, and estimating the total score of all split moves. In the case where K decides to split C ′
∗

into two new clusters, the K kernel must also decide on a particular partition of C ′
∗ into two clusters C ′ and C ′′. Our K

kernel actually makes this decision before deciding whether to split, merge, or stay, at the same time as it produces the
estimate ŝs of the total score of all possible split moves. (Thus, in the case that K does not actually implement a split move,
the choice of C ′ and C ′′ is still made, and this choice is an auxiliary variable which the L kernel must constrain the value
of.) Estimating ŝs and choosing C ′, C ′′ are done via importance sampling using the proposal QK

split(C
′
∗, y1:t → u,C ′, C ′′)

described in the following paragraph, which generates a partition C ′, C ′′ of C ′
∗, and also some auxiliary random decisions

u. To do importance sampling using a proposal with auxiliary randomness we also introduce a “meta-proposal” kernel
hK(C ′

∗, C
′, C ′′, y1:t → u) to enable us to “pseudo-marginalize” over the randomness u (our choice of hK is described

below). For a detailed explanation of how meta-proposals can be used to pseudo-marginalize over auxiliary random
choices, see Lew et al. (2022); note however that no additional theory beyond SMCP3 is needed to justify this SMCP3

algorithm or understand the steps it performs. The particular way our K proposal uses QK
split and hK is as follows. For

some N , for each i = 1, . . . , N , K generates (C ′
i, C

′′
i , ui) ∼ QK

split(C
′
∗, y1:t → ·), and computes the importance weight

wsplit
i =

pt(Π
C′

i,C
′′
i

t , y1:t)h
K(C ′

∗, C
′
i, C

′′
i , y1:t → u)

QK
split(C

′
∗, y1:t → C ′

i, C
′′
i , u)

.

K then sets ŝs = 1
N

∑N
i=1 w

split
i . To choose the final proposed C ′, C ′′, K samples an index i ∈ {1, . . . , N} s.t. the

probability of choosing any given i is proportional to wsplit
i , and sets C ′, C ′′ = C ′

i, C
′′
i . In our experiments, we use

N = 10.

A smart proposal for a single split move. The kernel QK
split(C

′
∗, y1:t → u,C ′, C ′′) splits C ′

∗ into two clusters using 3
pieces of auxiliary randomness: c1, c2, and p. c1 and c2 are two “chaperone” datapoints Miller et al. (2015) which initialize
clusters. p is an additional point that goes in the cluster with c1. QK

split deterministically sets c1 = t, then samples a distinct
p ∈ C ′

∗ with probability proportional to p2({1, 2}, (yt, yp)), and then samples c2 uniformly from the remaining points in
C ′

∗ not equal to c1 or p. It initializes two clusters C ′ = {c1, p} and C ′′ = {c2}. QK
split then iterates over every remaining

point i in C ′
∗ in sorted order (low to high), and for each one, decides to add it either to C ′ or C ′′, s.t. the probability of

adding it to cluster C ′ is proportional to the joint PDF of the clustering C ′ ∪ {i}, C ′′ with all the datapoints for indices in
these sets, and C ′′ is proportional to the corresponding joint PDF of the clustering C ′, C ′′ ∪ {i}. The L kernel (described
below) uses a variant of this proposal, QL

split which also performs this sequential process to assign each point to either C ′

or C ′′. QL
split initializes C ′ and C ′′ differently from QK

split: it first samples c1 uniformly from C ′
∗, then samples c2 uniformly

from the remaining points, then sets p = −1 deterministically, and finally initializes C ′ = {c1} and C ′′ = {c2}.

Inverting the auxiliary randomness in a single split proposal. The kernel hK(C ′
∗, C

′, C ′′, y1:t → u) must propose
values for u = (c1, c2, p). It does this by setting c1 = t, sampling p uniformly from C ′ \ {t}, and sampling c2 uniformly
from C ′′. The L kernel uses a variant of this, hL, which sets p = −1, samples c1 uniformly from C ′, and samples c2
uniformly from C ′′.

The L kernel: producing Πt−1 from Πt. The L kernel in our SMCP3 algorithm must output a partition Πt−1, given the
Πt output by K. If {t} ∈ Πt, L simply outputs Πt−1 = Πt \ {{t}}. Otherwise, L chooses between a split, merge, or stay
move on Πt, using proposals calibrated for the model pt−1(Πt−1, y1:t−1), rather than the model calibrated to pt used by
the K kernel. In particular, upon receiving Πt, L finds the cluster C̃ ∈ Πt containing the point t, and sets C̃ ′ = C̃ \{t} and
Π1

t−1 = Πt \ {C̃}∪{C̃ ′}. L then uses the steps described in the preceding paragraphs to decide whether to split cluster C̃ ′

into two new clusters, merge C̃ ′ with another cluster in Π1
t−1\{C̃ ′}, or output Πt−1 = Π1

t−1. The above steps are modified
in three ways when used by the L proposal to choose to split, merge, or keep C̃ ′: (1) each score computed in the K kernel
using pt(·, y1:t) is computed in L using pt−1(·, y1:t−1), (2) QK

split and hK are replaced by QL
split and hL, and (3) while split

moves in the K kernel cannot split clusters initially containing only 2 points, because the K kernel may not perform a split
move which results in a partition in which t is in a singleton cluster, the L kernel may split clusters containing 2 points.

The manner in which the K and L kernel constrain each others’ random choices. In addition to proposing Πt from
Πt−1, the K proposal must also output a specification of the value of every random choice the L kernel makes, such that if
the L kernel made those choices when given Πt, it would output the same Πt−1 K started with. Likewise, L must output
a specification of every choice made by K. Some of the random choices made by L can be constrained using the choices
K makes to choose Πt, and vice versa: when K performs a split, L must perform the opposite merge, etc. There are other
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Est. of logP (y1:T ) Mean runtime Particle count
Medicare data

Locally Optimal SMC -37294.94 ± 2650.37 42.2 seconds 160
Resample-Move Split/Merge -14259.87 ± 274.92 42.3 seconds 32
SMCP3 Split/Merge -13882.15 ± 0.53 34.0 seconds 2

Table 2: Results for the model in section 5.2, with the particle counts and mean runtime for each SMC algorithm. Results
are computed in the same way as those in table 1.

there are other choices made by L which it is unclear how to constrain by the random choices K needs to make to compute
Πt, and likewise there are choices made by K which L cannot constrain without sampling additional random values. Thus,
K and L sample additional random choices solely for the sake of constraining each other.

The extra random choices K makes are as follows:

1. K samples all the randomness L would generate to sample and score its split moves, which are cannot be determin-
istically constrained by the choices K has made. If K did not choose to make a merge move, this means that L did
not choose a split move, so all random choices L made to estimate the likely value of doing a split move need to
be proposed by K. In this case, K can propose these choices from the exact same distribution L would use. If K
did choose to make a merge move, L must have proposed a split move which inverts this merge move. This means
that one of the N possible split moves proposed by the L kernel was consistent with the merge move K performed.
K generates N − 1 random split proposals for the L kernel to have made as the possible splits not selected as the
chosen split move in order to estimate ŝs, and generates a final split move which is the exact opposite of the merge
move it made (meaning the proposed C ′ and C ′′ are the clusters C ′

∗ and C which K merged). To do this, K must
sample auxiliary randomness u which QL

split may have generated in proposing the C ′ and C ′′; it does this by sampling
u ∼ hL(C∗ ∪ C,C∗, C, y1:t−1 → ·).

The extra random choices L makes are as follows:

1. L samples all the randomness K would generate to sample and score its split moves. This is done symmetrically to
how K generates the randomness needed for the split-related proposals in L.

2. If L performed a split move, splitting cluster C̃ ′ into clusters C ′, C ′′, then the locally-optimal datapoint assignment
at the start of the K kernel may have initially placed t either into C ′ or C ′′; L must choose one of these options,
and does so such that the probability of choosing C ′ and C ′′ are each proportional to the joint PDF of the resulting
partition after putting t into the chosen cluster.

Given these additional random choices, L can constrain all the random choices K made for the sake of generating Πt, and L
can also constrain the additional random choices K made for the sake of constraining L by filling in the values these choices
would need to take for L to output the constraint on K consistent with the choices it actually made during its execution. K
constrains the choices in L similarly. (In the case where K added t to a singleton cluster, and L deterministically inverted
this, the only random choice from K which L has to fill in is the fact that K chose to put it in its own cluster.)

G Runtime-normalized experimental results

In section 5, for simplicity, experimental results were presented in which the SMC algorithms under comparison were run
with equal particle counts. In this section, we include algorithmic comparisons normalized by wall-clock runtime.

Online inference in state-space models. In Section 5.1, we compared SMC inference algorithms run with equal particle
counts. Here we provide plots showing that similar quantitative results hold when we compare the inference algorithms
each given similar runtimes. In particular, Figure 8 plots the performance of SMCP3 and our two baseline algorithms on
the 100-dimensional state-space modeling task from Section 5.1. Figure 7 also plots the performance of SMCP3 and the
baselines on the 3D object tracking task from Figure 6. For each of these examples, the runtime plots tell essentially the
same story as the particle count plots.

Online inference in mixture models. Table 2 shows a runtime-normalized variant of the mixture model results from
Table 1. As in the particle-count-normalized experiments from Table 1, on the Medicare dataset, SMCP3 achieves better
log-marginal-likelihood estimates than the baselines.
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Figure 7: Log marginal likelihood vs. wall clock time for SMCP3 and a bootstrap particle filter. The SMCP3 algorithm
was run with 2, 4, 6, 8, and 10 particles while the particle filter was run with 10, 18, 50, 63, 81, and 111 particles. To
generate the 3D object-tracking results for this figure, inference was run on a generic CPU with no graphics optimizations,
resulting in runtimes ranging between 10 to 30 seconds. Because the probabilistic model in the loop of the inference
algorithm contains an approximate renderer, there is reason to expect that graphics optimizations and GPU rendering could
significantly improve performance.
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Figure 8: Results for the model in Section 5.1. We ran each algorithm with varying numbers of particles, between 1 and
2000, and measured average runtimes and average log marginal likelihood estimates. Here we plot log marginal likelihood
estimates against runtimes.
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