GATB

The Genome Assembllyf& Analysi :1]‘""‘:@2@

Main Concepts

GATB

 NGS technologies produce many short reads

>read 1
ACGACGACGTAGACGACTAGCTAGC
AATGCTAGCTAGGATCAAAACTACG
ATCGACTAT

>read 2
ACTACTACGATCGATGGTCGAGGGC
GAGCTAGCTAGCTGACGCTGCTCGC
TCTCTCGCT

>read 10.000.000
TCTCCTAGCGCGGCGTATACGCGCT
AAGCTAGCTCTCGCTGCTCGCTAGC
TACGTAGCT

e Each read is split into words named kmers

A kmer has a fixed size K

 Example for K=11

. ACGACGACGTA kmer 1
. CGACGACGTAG kmer 2 |
GACGACGTAGT kmer 3 |
CGACGTAGTA kmer 4 |
ACGATCGACTA kmer 18 |
CGATCGACTAT kmer 19 |

GATB
) C

J

The Genome Assemblys&FAnalySiSHll

]

« Each kmer of size K Is inserted as a node
of a de Bruijn graph

e Two nodes A and B are connected
<=>
suffix (K-1) of A equals prefix (K-1) of B

e Example (k=11)

GATB

The Genome Assemibly & Analyf S 1

 Two reads having common kmers will be
connected in the de Bruijn graph

 Example (k=11)

§ >read 1
 ACGACGACGTAGTAAACTACGATCGACTAT

~ >read 2
. CTACGATCGACTATTAGTGATGATAGATAGAT
N S~ T — N
Kmers specific Kmers common to Kmers specific
to read 1 read 1 and read 2 to read 2

« From reads to de Bruijn graph

1. Split the reads into kmers

2. Insert the kmers into a de Bruijn graph

>read 1
ACGACGACGTAGACGACTAGCTAGC
AATGCTAGCTAGGATCAAAACTACG
ATCGACTAT

>read 2
ACTACTACGATCGATGGTCGAGGGC

GAGCTAGCTAGCTGACGCTGCTCGC
TCTCTCGCT

>read 10.000.000
TCTCCTAGCGCGGCGTATACGCGCT
AAGCTAGCTCTCGCTGCTCGCTAGC
TACGTAGCT

©

GATB

The Genome Assemiolysé Analyf

 Assembly task : traverse the de Bruijn graph

« A path in the graph is an assembly sequence
called contig

 Example :

The graph may not
| be resolvedina
single contig !

GATB-CORE only stores nodes of the de Bruijn
graph, the edges are computed on the fly when
needed.

Consequence : lower memory footprint

) O
“ o o
=) 0
© O O
© O o

GATB

The Genome Assembly & Ainalys

GATB-CORE stores the nodes of the de Bruijn
graph in a Bloom filter

A Bloom filter is a space-efficient structure used
to test whether an element is a member of a set

False negatives are not possible
¥k False positives are possible

Consequence : lower memory footprint

An extra data structure named cFP is used to
avoid the false positives drawback

GATB

 Requesting whether a node belongs to the graph

=> request the Bloom filter

the graph

« As aresult, we have a deterministic low memory
footprint structure

« The HDFS5 file format is used for storing the whole
graph information (suffix .h5)

1. If the answer is « no », the node doesn't belong to

2. If anwer is « yes », the cFP structure is requested

10

.
The Genome Assemioly & Analhytsls ool [Be3x

So, GATB-CORE transforms a set of reads into a
de Bruijn graph

T

>14_G1511837
ccccccccccccccc

| recrcaceacorT " GATB

I=| acaTccaTGacAG E
14_G151763 ‘ (]
ccccccccccc

LL| rrrcsaccrracerh CORE L
ATCA
>14_G1517

The transformation can be done with the dbgh5
binary provided by the GATB-CORE component

dbgh5 -in myreads.fa -kmer-size 31 -out graph.h5

GATB-CORE provides a C++ library for reading
the de Bruijn graph in HDF5 format

11

GATB

The Genome Assembly & Ainalys

« GATB-TOOLS provides sotfware based on the
GATB-CORE C++ library

* In particular, some of them process information by
traversing the de Bruijn graph

* A classical pipeline for such a tool is :

dbgh5 -in myreads.fa -kmer-size 31 -out graph.h5

SomeTool -in graph.h5 -argl 1 -arg2 7

 Advantage : GATB-TOOLS developpers have just
to focus on their own algorithms and don't have to
bother with the de Bruijn graph construction

12

GATB

The Genome Assemiblys&sAualy

Some tools from GATB-TOOLS

 Minia
short-read assembler based on a de Bruijn graph.The output of
Minia is a set of contigs. Minia produces results of similar
contiguity and accuracy to other de Bruijn assemblers (e.g.
Velvet).

e DiscoSNP

discover Single Nucleotide Polymorphism (SNP) from non-
assembled reads

« TakeABreak

detects inversion breakpoints without a reference genome by
looking for fixed size topological patterns in the de Bruijn graph

« Bloocoo

k-mer spectrum-based read error corrector, designed to correct
large datasets with a very low memory footprint.

13

GATB

The Genome Assemiolysé Analyf

GATB-CORE C++ library quick overview (1)

High level packages

I sVstem]

[

bank

| tools

<

kmer

debrunn

14

-

The Genome Assemioly & Analﬁwms ool [Be3x

—

GATB-CORE C++ library quick overview (2)

The system package holds all the operations related to the
operating system: file management, memory management and
thread management.

The tools package offers generic operations used throughout
user applicative code, but not specific to genomic area.

The bank package provides operations related to standard
genomic sequence dataset management. Using this package
allows to write algorithms independently of the input format.

The kmer package is dedicated to fine-grained manipulation of k-
mers.

The debruijn package provides high-level functions to
manipulate the de Bruijn graph data structure

15

GATB
E

The Genome Assemblys&FAnalySiISH

]

J
S
X

GATB-CORE C++ library quick overview (3)

« A de Bruijn graph is represented by an object of the
class Graph

A Graph object can be :
* built from a set of reads (a FASTA file for instance)
« saved in a HDFS5 file
 |oaded from a HDFS5 file

16

GATB

GATB-CORE C++ library quick overview (4)

« A Node object is a node in the bi-directional de
Bruijn graph.

struct Node

{

Node: :Value kmer;
Strand strand;
u_intlé6_t abundance

}i

* ‘'kmer'is the minimum value of the two kmers (one per strand) of a
node in the bidirectional de Bruijn graph.

e 'strand' tells with which strand the 'kmer' value has to be
interpreted.

 'abundance'is the occurrences number of the kmer in the initial

set of reads.
17

GATB
E

The Genome Assemblys&FAnalySiISH

]

J
S
X

GATB-CORE C++ library quick overview (5)

A Edge object is a transition between two nodes.

struct Edge
{

Node from;
Node to;
Nucleotide nt;
Direction dir;
}i
A Graph object is immutable
* Built once from a set of reads
« Can not be modified

 Node and Edge objects are retrieved from the graph

18

GATB

The Genome Assemiblys&SAmalys

GATB-CORE C++ library quick overview (6)

« Avalaible operations on a graph

Iteration of all the nodes of a graph
Iteration of the branching nodes of a graph
Get neighbors nodes (from a node)

Get neighbors edges (from a node)

Get in/out degree (from a node)

Tells whether a node is branching or not
Many more features

19

GATB

The Genome Assemlblys & Analyﬁ

GATB-CORE C++ library quick overview (7)

 Create a graph from reads

// We include what we need for the test !
#include <gatb/gatb_core.hpp>

int main (int argc, char* argv[])

{ |
// We get a command line parser for graphs available options. :
OptionsParser parser = Graph::getOptionsParser(); 3
// We use a try/catch block in case we have some command line parsing issue. §
try { 3

‘ // We parse the user options. i
: parser.parse (argc, argv); 3
: // We create the graph with the provided options. §
§ Graph graph = Graph::create (parser.getProperties()); ;
§ // We dump some information about the graph. §
3 std::cout << graph.getInfo() << std::endl; }
3 } |
: catch (OptionFailures& e) |
o |
} e.getParser().displayErrors (stdout); i
e.getParser().displayHelp (stdout); :
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}

GATB

The Genome Assembllys& Aially; '

GATB-CORE C++ library quick overview (8)

 Load a graph and iterate its nodes

// We include what we need for the test
#include <gatb/gatb_core.hpp>

int main (int argc, char* argv[])
{
// We check that the user provides a graph URL (supposed to be in HDF5 format).
if (argc < 2)
{
std::cerr << "You must provide a HDF5 file." << std::endl;
return EXIT FAILURE;

¥

// We load the graph from the provided argument
Graph graph = Graph::load (argv[l]);

// We get an iterator for all nodes of the graph.
Graph::Iterator<Node> it = graph.iterator<Node> ();

// We loop each node. Note the structure of the for loop. §
for (it.first(); !it.isDone(); it.next()) }

{

// The currently iterated node is available with it.item()
// We dump an ascii representation of the current node.
std::cout << graph.toString (it.item()) << std::endl;

return EXIT_SUCCESS;

