Mesure image
En théorie de la mesure, la mesure image est une mesure définie sur un espace mesurable et transférée sur un autre espace mesurable via une fonction mesurable.
Définition
[modifier | modifier le code]On se donne deux espaces mesurables et , une application mesurable et une mesure . La mesure image de μ par f est une mesure sur notée et définie par :
Cette définition s'applique également aux mesures complexes signées.
Formule de changement de variables
[modifier | modifier le code]La formule de changement de variables est l'une des principales propriétés[1] : Une fonction g sur X2 est intégrable par rapport à la mesure image f*μ si et seulement si la fonction composée g∘ f est intégrable par rapport à la mesure μ. Dans ce cas les deux intégrales coïncident :
Exemples et applications
[modifier | modifier le code]- La mesure de Lebesgue naturelle sur le cercle unité S1, vu ici comme sous ensemble du plan complexe ℂ, n'est pas définie comme la mesure image de la mesure de Lebesgue λ sur l'ensemble des réels ℝ, mais de sa restriction, que nous noterons également λ, à l'intervalle [0, 2π[. Soit f : [0, 2π[ → S1 la bijection naturelle définie par f(t) = eit. La mesure de Lebesgue sur S1 est alors la mesure image f*λ. Cette mesure f*λ peut également être appelée mesure de longueur d'arc ou mesure d'angle, puisque la f*λ-mesure de l'arc S1 est précisément la longueur de l'arc.
- L'exemple précédent s'étend pour définir la mesure de Lebesgue sur le tore n-dimensionnel Tn. La mesure de Lebesgue sur Tn est, à renormalisation près, la mesure de Haar sur le groupe de Lie compact connexe Tn.
- Une variable aléatoire est une application mesurable entre un espace probabilisé et ℝ. La mesure de probabilité d'une variable aléatoire est la mesure image de ℙ par la variable aléatoire X :
- Considérons la fonction mesurable f : X → X et la composition de f par elle-même n fois :
Cette fonction itérative forme un système dynamique. Il est souvent utile de trouver une mesure μ sur X que l'application f laisse inchangée, ou mesure invariante (en), i.e. qui vérifie : f*μ = μ.
Références
[modifier | modifier le code]- (en) V. I. Bogachev, Measure Theory, Springer, , sections 3.6-3.7