Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ».
Alors la densité de probabilité de la distribution normale asymétrique de paramètre α est donnée par
Pour ajouter un paramètre de position et un paramètre d'échelle à cela, on utilise la transformation usuelle . On peut vérifier que l'on retrouve une distribution normale lorsque , et que la valeur absolue de l'asymétrie augmente lorsque la valeur absolue de augmente. La distribution est asymétrique vers la droite si et est asymétrique vers la gauche si .
La densité de probabilité avec un paramètre de position ξ, un paramètre d'échelle ω, et un paramètre d'asymétrie α devient
L'estimateur du maximum de vraisemblance pour , , et peut être calculé numériquement, mais il n'existe pas d'expression directe des estimateurs sauf si . Si l'on a besoin d'une expression explicite, la méthode des moments peut être appliquée pour estimer à partir de l'asymétrie empirique de l'échantillon, en inversant l'équation d'asymétrie. Cela donne l'estimateur
où , et est l'asymétrie empirique. Le signe de est le même que celui de . Par conséquent, .