Théorème de Gerschgorin

(Redirigé depuis Théorème de Gershgorin)

En analyse numérique, le théorème de Gerschgorin est un résultat permettant de borner a priori les valeurs propres d'une matrice carrée. Il a été publié en 1931 par le mathématicien biélorusse Semion Gerschgorin[1],[Note 1]. Ce résultat est notamment utilisé dans le cas particulier des matrices stochastiques.

Exemple de théorème du disque de Gershgorin. Ce diagramme montre les disques en jaune dérivés pour les valeurs propres. Les deux premiers disques se chevauchent et leur union contient deux valeurs propres. Les troisième et quatrième disques sont disjoints et contiennent chacun une valeur propre.

Énoncé

modifier

Soit A une matrice complexe de taille n×n, de terme général (aij). Pour chaque indice de ligne i entre 1 et n on introduit le disque de Gerschgorin correspondant

 

qui constitue effectivement un disque dans le plan complexe, de rayon Ri = Σj ≠ i | aij |.

Théorème — Toute valeur propre de A appartient au moins à l'un des disques de Gerschgorin.

En appliquant le théorème à la matrice transposée de A, une nouvelle information est donnée sur la localisation des valeurs propres : elles se trouvent dans la réunion des disques de Gerschgorin associés aux colonnes

 

Démonstration

modifier

Soient λ une valeur propre de A et X = (x1, ..., xn) un vecteur propre associé (noté comme vecteur colonne). Pour tout i compris entre 1 et n, on a

 

d'où

 

Choisissons un indice i pour lequel le module de xi est maximal. Puisque X est un vecteur propre, |xi| est non nul et il est alors possible de former le quotient

 

Une autre démonstration consiste à remarquer que 0 est valeur propre de   et d'utiliser le lemme de Hadamard.

Notes et références

modifier
  1. Son nom peut être transcrit de diverses manières : Gershgorin, Geršgorin, Gerschgorin ou encore Guerchgorine.

Références

modifier
  1. (de) S. Gerschgorin, « Über die Abgrenzung der Eigenwerte einer Matrix », Izv. Akad. Nauk. USSR Otd. Fiz.-Mat. Nauk 7, 1931, p. 749-754.

Voir aussi

modifier

Article connexe

modifier

Ovale de Cassini

Bibliographie

modifier

Liens externes

modifier