Profiling an Architectural Simulator Using FireSim to Profile gem5!

Johnson Umeike, <u>Neel Patel</u>, Alex Manley, Amin Mamandipoor, Heechul Yun, Mohammad Alian

Electrical Engineering and Computer Science

Executive Summary

- Motivation: software-based architectural simulation is abundant and slow!
- Observation: gem5 runs up to 1.7~3.7x faster on a MacBook Pro w/ M1 vs. Dell server w/ Xeon Gold!
- Goal: Extensively profile gem5 using hardware performance counters
- Initial insights: gem5 is frontend bound and sensitive to L1 size
- Used FireSim to compare gem5 performance w/ various L1 size
- **Results**: gem5 performance increases by up to 58% when increasing L1 cache size from 16 to 64KB

- Introduction
- Observation and Research Question
 ✓ gem5 runs much faster on M1 platforms!
- Initial Results
 - ✓ gem5 is front-end bound
 - ✓ M1 has larger L1 cache size
- Using FireSim
 - ✓ Sensitivity of gem5 to L1 cache size
- Challenges of Using FireSim
- Conclusion

Introduction

• Observation and Research Question ✓ gem5 runs much faster on M1 platforms!

- Initial Results
 - ✓ gem5 is front-end bound
 - ✓ M1 has larger L1 cache size
- Using FireSim
 - ✓ Sensitivity of gem5 to L1 cache size
- Challenges of Using FireSim
- Conclusion

Introduction

Software-based architectural simulation is widespread and slow!

✓ gem5, Zsim, Sniper,

✓ E.g., gem5 simulates at 0.1 to 1MIPS

- Many efforts on reducing simulation time:
 - ✓ Sampling, checkpointing [SMARTS'03, SimPoint'03, LoopPoint'22]
 - ✓ FPGA acceleration [FAME'10, FireSim'18]
 - ✓ Parallel/distributed simulation [ZSim'13, dist-gem5'17]
 - ✓ Trading off simulation accuracy for speed [SlackSim'09]

Introduction

Observation and Research Question ✓ gem5 runs much faster on M1 platforms!

- Initial Results
 - ✓ gem5 is front-end bound
 - ✓ M1 has larger L1 cache size
- Using FireSim
 - ✓ Sensitivity of gem5 to L1 cache size
- Challenges of Using FireSim
- Conclusion

Observation

• gem5 simulation speed on different platforms

Research Questions?

- Why does gem5 run faster on M1?
- Where are the bottlenecks in running gem5 simulation?
- How much faster can gem5 run by tuning micro-architecture and system configurations?

- Introduction
- Observation and Research Question ✓ gem5 runs much faster on M1 platforms!
- Initial Results
 - ✓ gem5 is front-end bound
 - ✓ M1 has larger L1 cache size
- Using FireSim
 - ✓ Sensitivity of gem5 to L1 cache size
- Challenges of Using FireSim
- Conclusion

Methodology

• Use gem5 as the application

✓ Simulate systems with different CPU types running different PARSEC workloads

• Use hardware performance counters to profile gem5

Parameters	Dell Server w/ Xeon Gold 6242 R	Apple MacBook w/ M1 Chip
Max Frequency	3.1 GHz (4.1 Turbo Boost)	3.2 GHz (Performance Cores)
iCache, dCache	32KB, 32KB	192КВ, 128КВ
L2, L3	20MB, 35.75MB	12MB, 8MB
DRAM, Total BW	96GB DDR4-2933, 141 GB/sec	8GB LPDDR4X-4266, 68GB/sec

Methodology

• Use gem5 as the application

✓ Simulate systems with different CPU types running different PARSEC workloads

• Use hardware performance counters to profile gem5

Parameters	Dell Server w/ Xeon Gold 6242 R	Apple MacBook w/ M1 Chip	
Max Frequency	3.1 GHz (4.1 Turbo Boost)	3.2 GHz (Performance Cores)	
iCache, dCache	32KB, 32KB	192КВ, 128КВ	
L2, L3	20MB, 35.75MB	12MB, 8MB	
DRAM, Total BW	96GB DDR4-2933, 141 GB/sec	8GB LPDDR4X-4266, 68GB/sec	

M1 has 6x larger iCache and 4x larger dCache

Profiling L1 Miss Rate

• M1 has much lower L1 miss rate compared to Xeon

• More profiling results in our upcoming ISPASS paper

✓ J. Umeike, N. Patel, A. Manley, A. Mamandipoor, H. Yun, and M. Alian, "Profiling gem5 Simulator," ISPASS'2023

• gem5 simulation speed is very sensitive to L1 size

- How to prove this hypothesis?
 - ✓ Run gem5 on gem5??
 - \circ Too slow!
- FireSim is the solution!

- Introduction
- Observation and Research Question ✓ gem5 runs much faster on M1 platforms!
- Initial Results
 - ✓ gem5 is front-end bound ✓ M1 has larger L1 cache size
- Using FireSim
 - \checkmark Sensitivity of gem5 to L1 cache size
- Challenges of Using FireSim
- Conclusion

Running gem5 on FireSim

- 1. Set up the AWS FireSim environment
- 2. Build the gem5 binary for RISCV ISA
- 3. Prepare gem5 workload and transfer it to the instance
- 4. Create FireSim workload using FireMarshal
- 5. Build our target design
- 6. Modify parameters, tests, and results

Running gem5 on FireSim

- 1. Set up the AWS FireSim environment
- 2. Build the gem5 binary for RISCV ISA
- 3. Prepare gem5 workload and transfer it to the instance
- 4. Create FireSim workload using FireMarshal
- 5. Build our target design
- 6. Modify parameters, tests, and results

Check our website to reproduce steps 1 - 5

Running gem5 on FireSim

- 1. Set up the AWS FireSim environment
- 2. Build the gem5 binary for RISCV ISA
- 3. Prepare gem5 workload and transfer it to the instance
- 4. Create FireSim workload using FireMarshal
- 5. Build our target design
- 6. Modify parameters, tests, and results

Check our website to reproduce steps 1 - 5

Simulated System on FireSim

 quad-core Rocket Chip with an 16KB 4-way set associative icache & dcache, and a 512KB L2 cache base config

Parameter	Value
Design	Rocket Chip
Number of Cores	4
L1 Instruction Cache Size	16KB
L1 Data Cache Size	16KB
L2 Cache Size	512KB
Cache Block Size	64B
Number of Sets	64

Simulated System on FireSim

• We test the following L1 & L2 cache configurations

Configs	iCache	dCache	L2
1	4-way 16KB	16KB, 4 ways	8-way 512KB
2	4-way 16KB	16-way 64KB	8-way 512KB
3	16-way 64KB	4-way 16KB	8-way 512KB
4	8-way 32KB	8-way 32KB	8-way 512KB
5	4-way 16KB	16-way 64KB	16-way 1024KB
6	4-way 16KB	16-way 64KB	32-way 2048KB
7	16-way 64KB	16-way 64KB	8-way 512KB

dCache Size x4

• Baseline: iCache and dCache set to 16KB

iCache Size x4

• Baseline: iCache and dCache set to 16KB

iCache Size x4 & dCache Size x4

• Baseline: iCache and dCache set to 16KB

Config: iCache = 16KB dCache = 64KB

• Baseline: iCache and dCache set to 16KB

- Introduction
- Observation and Research Question ✓ gem5 runs much faster on M1 platforms!
- Initial Results
 - ✓ gem5 is front-end bound
 - ✓ M1 has larger L1 cache size
- Using FireSim
 - ✓ Sensitivity of gem5 to L1 cache size
- Challenges of Using FireSim
- Conclusion

Challenges and Comments for Using FireSim

• Preparing complex benchmarks on FireSim

✓ It took us one week

- FireSim is relatively slow and thus expensive
 - ✓ E.g., if the gem5 simulation runs in 2.34 sec on real hardware, running it on FireSim results in (~118x) slowdown
 - ✓ Different usage model compared w/ traditional software simulators
- Invalid configurations passed compilation but failed at the AGFI build stage

✓ Results in losing time and money

• FireSim is relatively expensive

✓ Each failed FPGA image build costs \$6 - \$52!

- Introduction
- Observation and Research Question ✓ gem5 runs much faster on M1 platforms!
- Initial Results
 - ✓ gem5 is front-end bound
 - ✓ M1 has larger L1 cache size
- Using FireSim
 - ✓ Sensitivity of gem5 to L1 cache size
- Challenges of Using FireSim
- Conclusion

- gem5 is frontend bound because of its large instruction footprint
- Using FireSim we showed
 - ✓ The size of the iCache and dCache significantly increase gem5's performance
 ✓ L2 size does not impact gem5 performance
- FireSim enabled us to study the sensitivity of gem5 performance to L1 cache size
- Future work: specialized cores for simulation?
 - ✓J. Umeike, N. Patel, A. Manley, A. Mamandipoor, H. Yun, and M. Alian, "Profiling gem5 Simulator," ISPASS'2023

Thank You!

Acknowledgment

This work was supported in part by NSF and ACE, one of the seven centers in JUMP 2.0, a Semiconductor Research Corporation (SRC) program sponsored by DARPA

Electrical Engineering and Computer Science

