
MIRAGE: Mitigating Cache Attacks with a 
Randomized Fully-Associative Cache

Published in USENIX Security 2021

Gururaj Saileshwar
NVIDIA Research / University of 

Toronto
& 

Moinuddin Qureshi
Georgia Tech



Fast

Slow

CORE-1

DRAM

Problem: CPU Cache Side-Channels

1

Cache 
Side-Channels

SPY
PROCESS

Data

Data

CORE

Data

Data

Last Level Cache (LLC)



CORE-0 CORE-1

Problem: CPU Cache Side-Channels

2

Shared 
Cache Set

Ways

CORE-1

VICTIM 
PROCESSLast Level Cache (LLC)

SPY
PROCESS

Set 
Conflict



CORE-0 CORE-1

Problem: CPU Cache Side-Channels

3

CORE-1

VICTIM 
PROCESSLast Level Cache (LLC)

SPY
PROCESS

Prime+Probe Attack
[Bernstein’05],[Perceival’05],

[Liu+, SP’15]

A B



CORE-0 CORE-1

Problem: CPU Cache Side-Channels

4

CORE-1

VICTIM 
PROCESSLast Level Cache (LLC)

SPY
PROCESS

Prime+Probe Attack
[Bernstein’05],[Perceival’05],

[Liu+, SP’15]

A BV
Secret-Dependent

B



CORE-0 CORE-1

Problem: CPU Cache Side-Channels

5

CORE-1

VICTIM 
PROCESSLast Level Cache (LLC)

SPY
PROCESS

A BV
Secret-Dependent

B

Slow Access for B à
Victim Accessed “V”

Spy Observing Victim’s Accesses Can Infer Sensitive Data
(e.g. AES Keys1, Fingerprint Websites in Browsers2, ML Model Architecture3)

1 - [Bernstein’05], 2 - [Shusterman+, SEC’20], 3 - [Yan+, SEC’20], [Hong+, ICLR’20]
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Prior Defense: Partitioning and Randomization
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Can We Design Principled Randomization?

Limited Scalability or 
Practicality

[MICRO’18], [MICRO’19] [MICRO’18], [ISCA’19], [SEC’19], [NDSS’20], [S&P’21]



Arms Race Between Attacks & Defenses
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Goal: Need to Eliminate Set-Associative Evictions (Set-Conflicts)



Our Solution MIRAGE: A Fully-Associative Randomized LLC

Challenge: Fully-Associative Lookup 
Requires Checking 100,000+ LLC Locations

Impractical Lookup Latency & Power

9Saileshwar and Qureshi. MIRAGE: Mitigating Conflict-Based Cache Attacks with a Practical Fully-Associative Design. In USENIX Security 2021.
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Saileshwar and Qureshi. MIRAGE: Mitigating Conflict-Based Cache Attacks with a Practical Fully-Associative Design. In USENIX Security 2021.

Our Solution MIRAGE: A Fully-Associative Randomized LLC

Practical Lookup within Set
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(16-32 Locations)

Key Challenge: How to get Security of Fully-Associative Design with Set-Associative Lookups? 
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16 Balls in 4 Buckets (C=4)

4C

4C

4C

4C

Random

C=4

16 Balls in 4 Buckets (C=8)

Bucket Overflow Every 
Ball Throw

Bucket Overflow Reduced, 
But Still Possible

8C

8C

8C

8C

C=8

Random

Buckets
(Sets)

Balls
(Cache Lines)

Global Eviction

Bucket Overflow
(Set-Associative Eviction)

Insight: Use Load-Balancing to Eliminate Set-Conflicts



Insight: Use Load-Balancing to Eliminate Set-Conflicts
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Insight: Use Load-Balancing to Eliminate Set-Conflicts
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Security Guarantee With Power of 2 Choices 

Simulation Results
Theoretical Model

0 1 2 3 4 5 6

Extra Capacity Per Bucket (Default-Capacity = 8) 

Balls Needed for 
Bucket Overflow

With 75% extra capacity,
1034 Ball Throws Needed 

for Bucket Overflow

Frequency of Bucket Overflows

• Strong Security: SAE unlikely in lifetime of universe
• Modest Costs: 2% Slowdown, 18% Storage Overhead
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LLC with 75% extra capacity & Power of 2 Choices Indexing à
Security Guarantee: 1 SAE in 1034  LLC Installs (1017 years)



Implementing MIRAGE’s Principled Randomization
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Implementing MIRAGE’s Principled Randomization
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MIRAGE (Decouples Tag and Data)

Tag-Store

Saileshwar and Qureshi. MIRAGE: Mitigating Conflict-Based Cache Attacks with a Practical Fully-Associative Design. In USENIX Security 2021.

Line Install
In Invalid Tag
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Tag-Store

Saileshwar and Qureshi. MIRAGE: Mitigating Conflict-Based Cache Attacks with a Practical Fully-Associative Design. In USENIX Security 2021.
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Note: MIRAGE also mitigates shared-memory attacks (like Flush+Reload) with duplication of shared-lines 21

Security Guarantee: With 75% extra tags (~20% extra storage), 
MIRAGE ensures Set-Associative Eviction (that leaks info) occurs once in 1017 years

Implementing MIRAGE’s Principled Randomization
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MIRAGE 
2% slowdown

Scatter-Cache
1.7% slowdown

8-Cores, 16MB 16-way Last Level Cache, evaluated using a Trace-Based Simulator (using Intel Pin)

[Saileshwar+, SEC’21]

[Werner+, SEC’19]

MIRAGE incurs slowdown of 2% (Storage-Neutral Slowdown of 3.5%)
comparable to Scatter-Cache that got broken
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Performance Validation with FireSim
• Challenge: FireSim (as of 2020) only models the tag-store and not data-store for the 

last-level cache - Timing model stalled till data functionally accessed from host DRAM 
• Cannot model global evictions in Mirage without the data-store & RPTR to tag-store

• Still useful for performance validation: implemented randomized cache with 2 skews 
& increased access latency (randomized evictions & access latency like MIRAGE)

4 x Rocket-Cores, 4MB /16-way L3 Cache)

23
Randomized Cache with 3 - 6 cycles extra access latency à limited slowdown of <1%



Pitfalls of Inaccurate Modeling of Mirage 
Case Study of the HPCA’23 Paper “Are Randomized Caches Truly Random”
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FPTR

RPTR

Bug-1: Data-Store and RPTR 
Invalidation not modeled

A. Chakraborty, S. Bhattacharya, S. Saha, and D. Mukhopadhyay, “Are Randomized Caches Truly Random? 
Formal Analysis of Randomized-Partitioned Caches”. Published In HPCA’23. 

Claim: MIRAGE has set-conflicts within 100K cache accesses & is broken.
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Bug-1: Data-Store and RPTR 
Invalidation not modeled

Original Buggy Initialization Bugfix: Initialization with N Random Accesses

Bug-2: Buggy Initialization of Tags 
(pvalid =0.5) à Starts with Full Sets

A. Chakraborty, S. Bhattacharya, S. Saha, and D. Mukhopadhyay, “Are Randomized Caches Truly Random? 
Formal Analysis of Randomized-Partitioned Caches”. Published In HPCA’23. 

Claim: MIRAGE has set-conflicts within 100K cache accesses & is broken.
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FPTR

RPTR

Bug-1: Data-Store and RPTR 
Invalidation not modeled

Bug-2: Buggy Initialization of Tags 
(pvalid =0.5) à Starts with Full Sets

Original Buggy Initialization Bugfix: Initialize Tag-Store with N Random Accesses

A. Chakraborty, S. Bhattacharya, S. Saha, and D. Mukhopadhyay, “Are Randomized Caches Truly Random? 
Formal Analysis of Randomized-Partitioned Caches”. Published In HPCA’23. 

Claim: MIRAGE has set-conflicts within 100K cache accesses & is broken.
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A. Chakraborty, S. Bhattacharya, S. Saha, and D. Mukhopadhyay, “Are Randomized Caches Truly Random? 
Formal Analysis of Randomized-Partitioned Caches”. Published In HPCA’23. 

Bug-1: Data-Store and RPTR 
Invalidation not modeled

Bug-3: Buggy Cipher Implementation 
Caused Non-Uniform Randomization

Original Buggy PRESENT Cipher Bugfix: Standard AES Cipher Bugfix: PRINCE Cipher 
Distribution of Set-Indices for 1 Million Addresses

Indices (sorted) Indices (sorted) Indices (sorted)

Bug-2: Buggy Initialization of Tags 
(pvalid =0.5) à Starts with Full Sets

Claim: MIRAGE has set-conflicts within 100K cache accesses & is broken.
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Case Study of the HPCA’23 Paper “Are Randomized Caches Truly Random”

29

FPTR

RPTR

Bug-1: Data-Store and RPTR 
Invalidation not modeled

Bug-2: Buggy Initialization of Tags 
(pvalid =0.5) à Starts with Full Sets

After Fixing Bugs in Authors’ Simulator, No Set-Conflicts observed in MIRAGE (as expected)

More details: https://github.com/gururaj-s/refuting_HPCA23_randCache

Bug-3: Buggy Cipher Implementation 
Caused Non-Uniform Randomization

A. Chakraborty, S. Bhattacharya, S. Saha, and D. Mukhopadhyay, “Are Randomized Caches Truly Random? 
Formal Analysis of Randomized-Partitioned Caches”. Published In HPCA’23. 

Claim: MIRAGE has set-conflicts within 100K cache accesses & is broken.

https://github.com/gururaj-s/refuting_HPCA23_randCache


Takeways from MIRAGE
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(a) Abstraction Mirage Provides (b) Overview of Mirage
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Principled Randomized Cache à Future-Proof Security
MIRAGE enables fully-associative evictions (leaking no address information) practically

Impact: MIRAGE Promises an End to the Arms Race
Between 2018 - 2020, 5 defenses were broken by 6 attacks. MIRAGE has been unbroken since 2020

Code: https://github.com/gururaj-s/mirage

https://github.com/gururaj-s/mirage

