
MIRAGE: Mitigating Cache Attacks with a
Randomized Fully-Associative Cache

Published in USENIX Security 2021

Gururaj Saileshwar
NVIDIA Research / University of

Toronto
&

Moinuddin Qureshi
Georgia Tech

Fast

Slow

CORE-1

DRAM

Problem: CPU Cache Side-Channels

1

Cache
Side-Channels

SPY
PROCESS

Data

Data

CORE

Data

Data

Last Level Cache (LLC)

CORE-0 CORE-1

Problem: CPU Cache Side-Channels

2

Shared
Cache Set

Ways

CORE-1

VICTIM
PROCESSLast Level Cache (LLC)

SPY
PROCESS

Set
Conflict

CORE-0 CORE-1

Problem: CPU Cache Side-Channels

3

CORE-1

VICTIM
PROCESSLast Level Cache (LLC)

SPY
PROCESS

Prime+Probe Attack
[Bernstein’05],[Perceival’05],

[Liu+, SP’15]

A B

CORE-0 CORE-1

Problem: CPU Cache Side-Channels

4

CORE-1

VICTIM
PROCESSLast Level Cache (LLC)

SPY
PROCESS

Prime+Probe Attack
[Bernstein’05],[Perceival’05],

[Liu+, SP’15]

A BV
Secret-Dependent

B

CORE-0 CORE-1

Problem: CPU Cache Side-Channels

5

CORE-1

VICTIM
PROCESSLast Level Cache (LLC)

SPY
PROCESS

A BV
Secret-Dependent

B

Slow Access for B à
Victim Accessed “V”

Spy Observing Victim’s Accesses Can Infer Sensitive Data
(e.g. AES Keys1, Fingerprint Websites in Browsers2, ML Model Architecture3)

1 - [Bernstein’05], 2 - [Shusterman+, SEC’20], 3 - [Yan+, SEC’20], [Hong+, ICLR’20]

CORE-0 CORE-1

Key Requirement for Attack: Set Conflicts

6

CORE-1

VICTIM
PROCESSLast Level Cache (LLC)

SPY
PROCESS

A BEviction
Set

V

Set
Conflict

Prior Defense: Partitioning and Randomization

7

Partitioned Cache Defense Randomized Cache Defenses

Address

Se
ts

Randomized Mapping Obfuscates Set-Conflicts

Practical To Adopt,
But Successive Defenses Broken

A

B

V

fRf

Insulate Cache Usage of Different Processes

BB

Can We Design Principled Randomization?

Limited Scalability or
Practicality

[MICRO’18], [MICRO’19] [MICRO’18], [ISCA’19], [SEC’19], [NDSS’20], [S&P’21]

Arms Race Between Attacks & Defenses

CEASER-S, Scatter-Cache
[ISCA’19] [SEC’19]

Line
Install (X)

Rf1

X

X
Rf2

Fast Probabilistic Evictions
[SP’21]

X XLine
Install (X)

f

Intel LLC
Proprietary Mapping

O(N) Accesses
[ISCA’19], [SP’19]

Broken by
Eviction-Set
Discovery in

O(N2) Accesses
[SP’15]

Line
Install (X)

Rf

CEASER

Dynamic
RemappingX X

Randomized
Mapping

[MICRO’18]
N lines in LLC

Pitfall: Set-Conflicts Continue at Few Obfuscated Locations

Skews

8
Goal: Need to Eliminate Set-Associative Evictions (Set-Conflicts)

Our Solution MIRAGE: A Fully-Associative Randomized LLC

Challenge: Fully-Associative Lookup
Requires Checking 100,000+ LLC Locations

Impractical Lookup Latency & Power

9Saileshwar and Qureshi. MIRAGE: Mitigating Conflict-Based Cache Attacks with a Practical Fully-Associative Design. In USENIX Security 2021.

Principled Security

Random Eviction
From Entire Cache

Mirage
LLC

Line
Install

Can Map to Any
Cache Location

A B CX

Line
Install

Abstraction to SW: Fully-Associative
Randomized Cache

Saileshwar and Qureshi. MIRAGE: Mitigating Conflict-Based Cache Attacks with a Practical Fully-Associative Design. In USENIX Security 2021.

Our Solution MIRAGE: A Fully-Associative Randomized LLC

Practical Lookup within Set

10

(16-32 Locations)

Key Challenge: How to get Security of Fully-Associative Design with Set-Associative Lookups?

Random Eviction
From Entire Cache

Mirage
LLC

Line
Install

Se
ts

A B CX

Line
Install

Principled Security

Abstraction to SW: Fully-Associative
Randomized Cache

Set-Associative
Cache

Se
ts

A B CX

Line
Install

Insight: Use Load-Balancing to Eliminate Set-Conflicts

Buckets
(Sets) Capacity = w

(Set-Associative
Eviction or SAE)

Bucket Overflow

Buckets & Balls Problem

Random

11

Balls
(Cache Lines)

Ways (w)

Eviction

Set-Associative
Randomized Cache

16 Balls in 4 Buckets (C=4)

4C

4C

4C

4C

Random

C=4

16 Balls in 4 Buckets (C=8)

Bucket Overflow Every
Ball Throw

Bucket Overflow Reduced,
But Still Possible

8C

8C

8C

8C

C=8

Random

Buckets
(Sets)

Balls
(Cache Lines)

Global Eviction

Bucket Overflow
(Set-Associative Eviction)

Insight: Use Load-Balancing to Eliminate Set-Conflicts

Insight: Use Load-Balancing to Eliminate Set-Conflicts

13

16 Balls in 4 Buckets (C=4)

4C

4C

4C

4C

Random

C=4

16 Balls in 4 Buckets (C=8)

Bucket Overflow Every
Ball Throw

Bucket Overflow Reduced,
But Still Possible

16 Balls in 4 Buckets (C=8)
& Power of 2 Choices

[Mitzenmacher’96]

Bucket Overflow Improbable:
Balanced Distribution

8C

8C

8C

8C

C=8

8C

8C

8C

8C

C=8

Random

Lower Load

Random

Buckets
(Sets)

Balls
(Cache Lines)

Insight: Use Load-Balancing to Eliminate Set-Conflicts

14

16 Balls in 4 Buckets (C=4)

4C

4C

4C

4C

Random

C=4

16 Balls in 4 Buckets (C=8)

Bucket Overflow Every
Ball Throw

Bucket Overflow Reduced,
But Still Possible

16 Balls in 4 Buckets (C=8)
& Power of 2 Choices

[Mitzenmacher’96]

Bucket Overflow Improbable:
Balanced Distribution

8C

8C

8C

8C

C=8

8C

8C

8C

8C

Random

Lower Load

Random

Buckets
(Sets)

Balls
(Cache Lines)

Global
Eviction

Bucket
Overflow

(Set
Conflict)

C=8

Security Guarantee With Power of 2 Choices

Simulation Results
Theoretical Model

0 1 2 3 4 5 6

Extra Capacity Per Bucket (Default-Capacity = 8)

Balls Needed for
Bucket Overflow

With 75% extra capacity,
1034 Ball Throws Needed

for Bucket Overflow

Frequency of Bucket Overflows

• Strong Security: SAE unlikely in lifetime of universe
• Modest Costs: 2% Slowdown, 18% Storage Overhead

15

Security Guarantee With Power of 2 Choices

Simulation Results
Theoretical Model

0 1 2 3 4 5 6

Extra Capacity Per Bucket (Default-Capacity = 8)

Balls Needed for
Bucket Overflow

With 75% extra capacity,
1034 Ball Throws Needed

for Bucket Overflow

Frequency of Bucket Overflows

• Strong Security: SAE unlikely in lifetime of universe
• Modest Costs: 2% Slowdown, 18% Storage Overhead

Set-Associative Eviction (SAE)

LLC Installs
Before SAE

Set

16

LLC with 75% extra capacity & Power of 2 Choices Indexing à
Security Guarantee: 1 SAE in 1034 LLC Installs (1017 years)

Implementing MIRAGE’s Principled Randomization

Tag-Store

One to One

Data-Store

Extra Tags Cheap, Extra Data Expensive (1:10)

75%
extra

Se
ts

Ways

17Saileshwar and Qureshi. MIRAGE: Mitigating Conflict-Based Cache Attacks with a Practical Fully-Associative Design. In USENIX Security 2021.

Implementing MIRAGE’s Principled Randomization

Data-Store

Tag FPTR

Data RPTR

75%
extra

Se
ts

Ways

Global Random Eviction

18

MIRAGE (Decouples Tag and Data)

Tag-Store

Saileshwar and Qureshi. MIRAGE: Mitigating Conflict-Based Cache Attacks with a Practical Fully-Associative Design. In USENIX Security 2021.

Line Install
In Invalid Tag

Implementing MIRAGE’s Principled Randomization

Data-Store

Tag FPTR

Data RPTR

Se
ts

Ways

Global Random Eviction
Line Install
In Invalid Tag

Skew-0

Skew-1

Power-of-2-Choices
Indexing

19

Tag-Store

Saileshwar and Qureshi. MIRAGE: Mitigating Conflict-Based Cache Attacks with a Practical Fully-Associative Design. In USENIX Security 2021.

Implementing MIRAGE’s Principled Randomization

Data-Store

Tag FPTR

Data RPTR

Se
ts

Ways

Global Random Eviction
Line Install
In Invalid Tag

Rf1

Skew-0

Skew-1

Rf2

20Saileshwar and Qureshi. MIRAGE: Mitigating Conflict-Based Cache Attacks with a Practical Fully-Associative Design. In USENIX Security 2021.

Tag-Store

Power-of-2-Choices
Indexing

Tag FPTR

Data RPTR

Se
ts

Ways

Line Install
In Invalid Tag

Rf1

Skew-0

Skew-1

Rf2

3 Invalid

2 Invalid

Guarantees
Invalid Tags

& Global Evictions

Note: MIRAGE also mitigates shared-memory attacks (like Flush+Reload) with duplication of shared-lines 21

Security Guarantee: With 75% extra tags (~20% extra storage),
MIRAGE ensures Set-Associative Eviction (that leaks info) occurs once in 1017 years

Implementing MIRAGE’s Principled Randomization

Data-Store

Global Random Eviction
Tag-Store

Power-of-2-Choices
Indexing

90%

95%

100%

105%

110%

as
tar
bz
ip2 gc

c

go
bm
k
h2
64

hm
me
r

lib
qn
tm mc

f

om
ne
t

pe
rlb
en
ch
sje
ng
xa
lan
c

bw
av
es
ca
ctu
s

ca
lcu
lix
de
alI
I

ga
me
ss
ge
ms

gro
ma
cs lbm les

lie mi
lc
na
md

po
vra
y
so
ple
x
sp
hin
x
ton
to wr

f

ze
us
mp

Sp
ec
Int
-12

Sp
ec
Fp
-17

Mi
x-2
9
All
-58N

or
m

al
ize

d
Pe

rf
or

m
an

ce

Scatter-Cache MIRAGE

Results – Performance

22

MIRAGE
2% slowdown

Scatter-Cache
1.7% slowdown

8-Cores, 16MB 16-way Last Level Cache, evaluated using a Trace-Based Simulator (using Intel Pin)

[Saileshwar+, SEC’21]

[Werner+, SEC’19]

MIRAGE incurs slowdown of 2% (Storage-Neutral Slowdown of 3.5%)
comparable to Scatter-Cache that got broken

119%

Mean

Sp
ecIn

t-1
2

Sp
ecFp

-17

Mix-
29

All-5
8

Performance Validation with FireSim
• Challenge: FireSim (as of 2020) only models the tag-store and not data-store for the

last-level cache - Timing model stalled till data functionally accessed from host DRAM
• Cannot model global evictions in Mirage without the data-store & RPTR to tag-store

• Still useful for performance validation: implemented randomized cache with 2 skews
& increased access latency (randomized evictions & access latency like MIRAGE)

4 x Rocket-Cores, 4MB /16-way L3 Cache)

23
Randomized Cache with 3 - 6 cycles extra access latency à limited slowdown of <1%

Pitfalls of Inaccurate Modeling of Mirage
Case Study of the HPCA’23 Paper “Are Randomized Caches Truly Random”

24

FPTR

RPTR

Bug-1: Data-Store and RPTR
Invalidation not modeled

A. Chakraborty, S. Bhattacharya, S. Saha, and D. Mukhopadhyay, “Are Randomized Caches Truly Random?
Formal Analysis of Randomized-Partitioned Caches”. Published In HPCA’23.

Claim: MIRAGE has set-conflicts within 100K cache accesses & is broken.

Pitfalls of Inaccurate Modeling of Mirage
Case Study of the HPCA’23 Paper “Are Randomized Caches Truly Random”

25

FPTR

RPTR

Bug-1: Data-Store and RPTR
Invalidation not modeled

Original Buggy Initialization Bugfix: Initialization with N Random Accesses

Bug-2: Buggy Initialization of Tags
(pvalid =0.5) à Starts with Full Sets

A. Chakraborty, S. Bhattacharya, S. Saha, and D. Mukhopadhyay, “Are Randomized Caches Truly Random?
Formal Analysis of Randomized-Partitioned Caches”. Published In HPCA’23.

Claim: MIRAGE has set-conflicts within 100K cache accesses & is broken.

Pitfalls of Inaccurate Modeling of Mirage
Case Study of the HPCA’23 Paper “Are Randomized Caches Truly Random”

26

FPTR

RPTR

Bug-1: Data-Store and RPTR
Invalidation not modeled

Bug-2: Buggy Initialization of Tags
(pvalid =0.5) à Starts with Full Sets

Original Buggy Initialization Bugfix: Initialize Tag-Store with N Random Accesses

A. Chakraborty, S. Bhattacharya, S. Saha, and D. Mukhopadhyay, “Are Randomized Caches Truly Random?
Formal Analysis of Randomized-Partitioned Caches”. Published In HPCA’23.

Claim: MIRAGE has set-conflicts within 100K cache accesses & is broken.

Pitfalls of Inaccurate Modeling of Mirage
Case Study of the HPCA’23 Paper “Are Randomized Caches Truly Random”

27

FPTR

RPTR

A. Chakraborty, S. Bhattacharya, S. Saha, and D. Mukhopadhyay, “Are Randomized Caches Truly Random?
Formal Analysis of Randomized-Partitioned Caches”. Published In HPCA’23.

Bug-1: Data-Store and RPTR
Invalidation not modeled

Bug-3: Buggy Cipher Implementation
Caused Non-Uniform Randomization

Original Buggy PRESENT Cipher Bugfix: Standard AES Cipher Bugfix: PRINCE Cipher
Distribution of Set-Indices for 1 Million Addresses

Indices (sorted) Indices (sorted) Indices (sorted)

Bug-2: Buggy Initialization of Tags
(pvalid =0.5) à Starts with Full Sets

Claim: MIRAGE has set-conflicts within 100K cache accesses & is broken.

Pitfalls of Inaccurate Modeling of Mirage
Case Study of the HPCA’23 Paper “Are Randomized Caches Truly Random”

28

FPTR

RPTR

A. Chakraborty, S. Bhattacharya, S. Saha, and D. Mukhopadhyay, “Are Randomized Caches Truly Random?
Formal Analysis of Randomized-Partitioned Caches”. Published In HPCA’23.

Bug-1: Data-Store and RPTR
Invalidation not modeled

Bug-3: Buggy Cipher Implementation
Caused Non-Uniform Randomization

Original Buggy PRESENT Cipher Bugfix: Standard AES Cipher Bugfix: PRINCE Cipher
Distribution of Set-Indices for 1 Million Addresses

Indices (sorted) Indices (sorted) Indices (sorted)

Bug-2: Buggy Initialization of Tags
(pvalid =0.5) à Starts with Full Sets

Claim: MIRAGE has set-conflicts within 100K cache accesses & is broken.

Pitfalls of Inaccurate Modeling of Mirage
Case Study of the HPCA’23 Paper “Are Randomized Caches Truly Random”

29

FPTR

RPTR

Bug-1: Data-Store and RPTR
Invalidation not modeled

Bug-2: Buggy Initialization of Tags
(pvalid =0.5) à Starts with Full Sets

After Fixing Bugs in Authors’ Simulator, No Set-Conflicts observed in MIRAGE (as expected)

More details: https://github.com/gururaj-s/refuting_HPCA23_randCache

Bug-3: Buggy Cipher Implementation
Caused Non-Uniform Randomization

A. Chakraborty, S. Bhattacharya, S. Saha, and D. Mukhopadhyay, “Are Randomized Caches Truly Random?
Formal Analysis of Randomized-Partitioned Caches”. Published In HPCA’23.

Claim: MIRAGE has set-conflicts within 100K cache accesses & is broken.

https://github.com/gururaj-s/refuting_HPCA23_randCache

Takeways from MIRAGE

30

(a) Abstraction Mirage Provides (b) Overview of Mirage

Tag-Store

Line
Install

f1

Line
Install

Mirage
LLC

Any Random Line
From Entire Cache

Eviction

Data-Store

Global
Random
Eviction}

Extra-tags & Indirection

Skewed-Indexing

Load-Aware
Skew Selection

f2
inv=3

inv=2

1

2

3

Principled Randomized Cache à Future-Proof Security
MIRAGE enables fully-associative evictions (leaking no address information) practically

Impact: MIRAGE Promises an End to the Arms Race
Between 2018 - 2020, 5 defenses were broken by 6 attacks. MIRAGE has been unbroken since 2020

Code: https://github.com/gururaj-s/mirage

https://github.com/gururaj-s/mirage

