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Note

This is an annotated version of an invited talk | gave at
GCPR 2018 addressing the theme “40 years of DAGM”

It includes a bibliography at the end with links to all
papers cited in the talk.

It is my personal view of the evolution of human
motion analysis from video.

I've been working on human motion since 1993 so |
only have 25 years of hands-on experience but | look
back 40 years.

| highlight papers that changed how | thought at the
time.

This is not a full review of the literature — it is my
personal, and biased, view of it.









Graph-based models of bodies

" From Ballard and Brown

Pictorial structures - Fischler and Elschlager ‘73



The beginning: 42 years ago
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F e i. Relaxation picks out the interpretation of A as a
even though a calf is a locally better alternmative.

G. E. Hinton. Using relaxation to find a puppet. In Proc. of the A.I.S.B. Summer
Conference, pages 148-157, July 1976. His first paper!



G.Hinton
Cognitive Studies Program
University of Sussex, Brighton

USING RELAXATION TO FIND A PUPPET

ABSTRACT

The problem of finding a puppet in a configuration of over-
lapping, transparent rectangles is used to show how a relaxa-
tion algorithm can extract the globally best figure from a
network of conflicting local interpretations.

INTRODUCTION

The program takes as input the co-ordinates of the corners of
some overlapping, transparent rectangles (See figure 1). The
problem is to find the best possible instantiation of a model
of & puppet. The difficulty is that if we only consider a
rectangle and its overlapping neighbours, then each rectangle
could be several different puppet parts or none at all, so
local ambiguities have to be resolved by finding the best
global interpretation., The aim of this peper is to show how
a relaxation method can be used instead of the obvious search
through the space of all combinations of locally possible in=-
terpretations. The relaxation method has several advantages:

1. Using parallel computation the best global interprete-
tion can be found quickly. The time taken is not exponen-
tial in the number of local possibilities because combina~-
tions are not dealt with explicitly.

2. The computing space required increases only linearly
with the number of possibilities, which makes this method
better than an exhaustive, breadth-first parallel search,
for which there is a combinatorial explosion in space.

3. It produces the best global interpretation, not just a
good one as in heuristic search.

All these reasons make relaxation look good as a model of
how the brain resolves conflicting low-level visual hypotheses.
A conventional, serial A.I. search would be very slow, given
the brain's sluggish hardware (Sutherland 1974).

THE PUPPET MODEL

The puppet, which is alwgys depicted in side view, consists of
fifteen rectangular parts having the following properties and



The early history was 3D

4

Marr and Nishihara ’ 78 Nevatia & Binford 73
Proposal for a general, Generalized cylinders
compositional, 3D shape fit to range data

representation There were no range scanners!



David Hogg, 1983
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projections of occluding surfaces. They represent the image
in Figure 4

Model-based vision: A program to see a walking person, D Hogg
Image and Vision computing 1 (1), 5-20



David Hogg, 1983
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q Fmally, thanks to Professor H Nagel for provxdmg =
s facilities at the University of Hamburg, FRG, to obtain the -
image sequence shown in Figure 1. -
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' Figure 5.  Edge-finding operation applied to the image in

Figure 12. Set of lines which correspond to the imag Fgure 4

projections of occluding surfaces. They represent the image

in Figure 4

Model-based vision: A program to see a walking person, D Hogg
Image and Vision computing 1 (1), 5-20



David Hogg, 1983

class WALKER [stretchr]
parta: posturc: [straight]
posttiont x = ~ 16 y =~ 10z =0a=0¢
partclass: person ¢c—0s—1
class: person [ lafdd)
postures: [stretchl lifir stretchr 1ifil) posture: [straight]
pars: position 2~ =16y~ 105 ~0a ~ 08
=]
partclass: torso !
weight 0.05 class: arm
[stretchl liftr stretchr hiftl) posss
position: x =0y — 45— —Sa~0b~ —Sc~0s~035 pertclass. upper-am
weight: 0.5
m"‘g_gf“’ position: x =0y =-202—0a=0b=0

partclasy: lower-arm

[strerchl liftr stretchr lifil] e
position: x =0y =112 z=0a=0h=0r=0c=014 ;':ﬂ':npf_.o,, 40z=0a=0b=[—
partclass: arm )
e class: lower-arm
weight: 0.05 parts
[stretchl] .
position: x =26 y =85 z= ~10a=0b=[1050] c =05 =1 5:?3:’;,‘“‘"’“
[l‘ﬁrl posiion: x =0 y=—2z=0a=0b=(
pos:cu;uh::f&v—”:—-»lOa-Db-[—lO!O-—H)O] 5"’.‘"'.'33' i
[stretchr] position: x =0y =—50z2=0a=05b=(
position 2 = 26y =855 — — 106 ~ 06— —50—10)c <~ 05 =1
(lif] class: leg
position: x =« 26y =« RS s> ~ [0 —0b—[-2040020)c—~ O ;ﬁ:l’ﬂ:lllﬂlﬂ\lbﬂl(]
s=1

Model-based vision: A program to see a walking person, D Hogg
Image and Vision computing 1 (1), 5-20



The lost decade.



Geometry and optimization: 1994-2004

FIG. 4. Mode! of the huma

FI1G. 20. Determined motion state.

Rohr, Towards Model-Based Recognition of Human
Movements in Image Sequences, CVGIP, 1994



The generative approach

such that the projection “matches” the image
data (edges, regions, color, texture...).




Generative approach
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Figure 14. Outdoor walking scene; contours
and skeleton are overlaid.

Tracking of persons in monocular image sequences. S. Wachter ; H.-H. Nagel,
Proceedings IEEE Nonrigid and Articulated Motion Workshop, 1997



Non-rigid parts

Recovery of Nonrigid Motion and Structure , Alex
Pentland and Bradley Horowitz, PAMI 1991



Multi-camera, markerless, mocap

——

Simple shapes, multi-camera, special clothing.

D. Gavrila, Vision-based 3-D Tracking of Humans in Action, Ph.D.
thesis, 1996.
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Cardboard people: A
parameterized model of
articulated motion

Ju, S. X, Black, M. J.,
Yacoob, Y., Face and
Gesture, 1996




Stochastic search
to deal with ambiguity



Represent a distribution over poses
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* Particle filter to propagate over time

Stochastic tracking of 3D human figures using 2D image motion
Sidenbladh, H., Black, M. J., Fleet, D., ECCV 2000



Represent a distribution over poses

Particle filter to propagate over time

Stochastic tracking of 3D human figures using 2D image motion
Sidenbladh, H., Black, M. J., Fleet, D., ECCV 2000



Stochastic search and tracking

Deutscher, North, Bascle, & Blake ‘99

Cham and Rehg ‘99



Nothing works.
Add a prior.
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Human Mot

ing and Tracking Cyclic
Sidenbbladh & Black, NIPS 2001
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Figure 9. Tracking 37 frames of an exaggerated gait. Note that the results are very accurate even though the style is very different from any
of the training motions. The last two rows depict two different views of the 3D inferred poses of the second row.

3D People Tracking with Gaussian
Process Dynamical Models,
Urtasun, Fleet, Fua, CVPR 2006




Early deep network prior

Restrlcted Boltzmann machlne

ARG AR AR b4

Figure 1: In a trained model, probabilities of each feature being “on conditional on the data at the
visible units. Shown is a 100-hidden unit model, and a sequence which contains (in order) walking,
sitting/standing (three times), walking, crouching, and running. Rows represent features, columns
represent sequential frames.

Modeling Human Motion Using Binary Latent Variables Graham
W. Taylor, Geoffrey E. Hinton and Sam Roweis, NIPS 2007



Priors are crutch for the weak.



Graphs come back: Belief propagation

Like Hinton but with probabilities

Bottom-up: Find parts. Model inference puts them together.

Felzenswalbb & Huttenlocher, Pictorial
Structures for Object Recognition, 1JCV 2005,



3D People

Attractive people: Assembling
loose-limbed models using non-
parametric belief propagation
Sigal, L., Isard, M. I., Sigelman, B.
H., Black, M. J., NIPS 2003

Loose-limbed people, Sigal, L.,
Isard, M., Haussecker, H., Black, M.
J. JCV 2011.

Loose-limbed body
(graphical model)



lllustration of the
message product:
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Ground truth.
There was none.
Were we making progress?



Sigal, Balan, Black, HumanEva, 2004 and 1JCV 2010.



3D humans in the wild

Recovering Accurate 3D Human Pose in The Wild Using IMUs and
a Moving Camera. Marcard, T. V., Henschel, R., Black, M. J.,
Rosenhahn, B., Pons-Moll, G., ECCV 2018



Video Inertial Poser (VIP)
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e combines a hand-held camera with body-worn
Inertial Measurement Units (IMUs)

* reconstructs accurate 3D poses

* fixes IMU drift problem

 works with multiple, interacting people

 enables 3D Human Motion Capture ,,in the wild“



3D pose estimation

Joint Optimization
Results

The model is only projected to the image, if a 2D pose was assigned.
For 3D renderings, we extrapolated respective camera poses using
camera IMU data.

Recovering Accurate 3D Human Pose in The Wild Using IMUs and a
Moving Camera. Marcard, T. V., Henschel, R., Black, M. J., Rosenhahn,
B., Pons-Moll, G., ECCV 2018




The problem

We don’t look like this.

Models don’t match the
data.

Systems using such models
tend to be brittle.

We argue that we need a
better model of human
shape and motion.




Early body models

L

[ Terzopoulos
and Metaxas ‘93 |

[ Kakadiaris and Metaxas ‘00 ]

[ Sminchisescu
and Triggs ‘03 ]

T RO s
- * s

[ Plankers and 2
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Learning face shapes

Blanz & Vetter, A Morphable Model for the Synthesis of 3D Faces, SIGGRAPH 1999



Inverse graphics
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Blanz & Vetter, A Morphable Model for the Synthesis of 3D Faces, SIGGRAPH 1999



Why is it hard?

The body has about
600 muscles,
200 bones,
200 joints, and
many types of joints.

We also bulge, breath, flex, and
jiggle.

Our shape changes with our age,

our fitness level, and what we
had for lunch.

Approach: model only what we
Ca N See — the Su rfa Ce. ANDREAS VESALIUS, Musculature Structure of a Man, c. 1543.



Learning a body model

[ Cyberware |

CAESAR dataset — 2001.



Learning body models (2003-2013)
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Learning body models (2003-2013)

|[Hasler et al. 2010]




Learning body models (2003-2013)

[Chen et al. 2013]




Learning body models (2003-2013)

Anguelov et al., SCAPE, 2005



Generative models of bodies
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Detailed human shape and pose from images
Balan, A., Sigal, L., Black, M. J., Davis, J.,
Haussecker, H., CVPR 2007



Goal: Virtual humans

Define a simple mathematical model of body shape.
t should look like real people.

t should move like real people.

t should be low-D, differentiable, have joints, and
e easy to animate and fit to data.




3dMDY

4D scanner:3D at 60 fps




Collect 3D scans from

M1
MM




and thousands of poses

Vet TN
by p it d

1000’s of high-resolution scans of different shapes and poses
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[} Q’ other parameters and
/r/\,\ returns a 3D mesh.
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Key idea: Everything is learned from registered
data to minimize surface-to-surface error.

J 1

SMPL Model Results

SMPL: A Skinned Multi-Person Linear Model,
Loper et al., SIGGRAPH 2015




RGB-D



Wt e ‘w | Synthetic data.

f . |l+ ./ MLapproach.
ront Vgl
—— L7 Bottom up.

Fast, reliable.

’
'

depth image == body parts | =) 3D joint proposals

Real-Time Human Pose Recognition in Parts from
Single Depth Images, Shotton et al., CVPR 2011



For reference. Not used.

Average Euclidean surface-to-surface error over 7 subjects: 2.4mm

Bogo et al., ICCV 2015.



The evolution of body models

1996 2006 2016

Learned 3D model of body shape and pose
from 3D scans.

Loper et al., SMPL, SIGGRAPH Asia 2015



The evolution of body models

1996 2006 2016

b2 Ay G

Dyna: A Model of Dynamic Human Shape in Motion,
Pons-Moll et al, SIGGRAPH 2015



The evolution of body models

1996

% )

67

2006

%

2016 2017
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“ClothCap: Seamless 4D Clothing Capture and Retargeting,”
Pons-Moll, G., Pujades, S., Hu, S., Black, M.J.,.
ACM Transactions on Graphics (SIGGRAPH), 2017.



Capture and model clothing




The evolution of body models

1]

1996 2006 2016 2018
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Infants are harder to capture because you
can’t direct them and scanning is complicated

Hesse, et al., Learning an Infant Body Model from RGB-D Data for
Accurate Full Body Motion Analysis, MICCAI 2018



The evolution of body models

1996 2006

% &N é>

Use RGB-D sequences to track and learn the
model.

Hesse, et al., Learning an Infant Body Model from RGB-D Data for
Accurate Full Body Motion Analysis, MICCAI 2018



SMIL: Skinned Multi-Infant Linear model

Registered model
original shape

RGB 3D point cloud

Goal: early detection of cerebral palsy from movement.

Hesse, et al., Learning an Infant Body Model from RGB-D Data for
Accurate Full Body Motion Analysis, MICCAI 2018



An alternative thread emerges
1997 - today



Detection: The Pure ML Approach

Person/Not-person

Single image



Support Vector Machines

Multiply the pixel values in the region by this

“mask” or “filter”:
1 (-1

Average the resulting absolute responses.

“Pedestrian detection using wavelet templates,” Oren et al CVPR’97.



Support Vector Machines

~ tfemplates

“Pedestrian detection using wavelet templates,” Oren et al CVPR’97.



Support Vector Machines

Product of wavelet templates and filtered image regions gives a vector of responses
for each region.

Bootstrapped SVM learns the classify pedestrian/background.

“Pedestrian detection using wavelet templates,” Oren et al CVPR’97.



AdaBoost

= m

B Cc

45,396 possible
features

Frame 1 Frame 2

V|ola, Jones and Snow, ICCV’03



Pedestrian Detection

Viola, Jones and Snow, ICCV’03



Hogg features

Histograms of Oriented Gradients for Human
Detection Navneet Dalal and Bill Triggs, CVPR 2005

(a) (b) (c) (d) (¢) () (&)

Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just ouiside the contour. (a) The average gradient image over the training examples. (b) Each “pixel”
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) I's computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.



Synthetic data for training



Use graphics to generate data

Learn a view-based
model of optical flow
and detect human
motion, which is
different from
background motion.

Automatic detection and tracking of human motion with a
view-based representation, Fablet, R., Black, M. J.
In European Conf. on Computer Vision, ECCV 2002



Single View to 3D Pose

Given synthetic
training data,
learn the mapping
from silhouette
contours to 3D
pose.

“Gaussian kernel RVM”, Agarwal and Triggs CVPR0O4

“Fast Pose Estimation with Parameter Sensitive Hashing”,
Shakhnarovich, G., Viola, P., & Darrell, T. CVPR’03.



SURREAL Dataset

Synthetic hUmans foR REAL tasks
light

3D pose ZW)ose

camera

background

* clothing

Varol, Romero, Martin, Mahmood,
Black, Laptev, Schmid,

“Learning from synthetic humans,”
CVPR 2017




SURREAL Dataset

http:/www.di.ens.fr/willow/research/surreal
Varol et al, CVPR 2017




Key innovation:
Mechanical Turk
Have people click on joints



MPIl Human Pose Dataset

Overview Browse Download Evaluation Results Related Benchmarks

sports occupation water activities home activities condition. exerc. fishing and hunt. religious activ. winter activ.

hocke—y, ice bakery home exercise trapping game sitting in church skiing, downhill

rope skipping hunting, birds

typihg, electric

serving food backpacking

trampoline locksmith hunting kneeling in church walking, for exerc.

— < : B = SR I

rock chrnbmg skating, ice dancing A

FEaN

cricket, batting fire fighter, .haul. windsurfing ) carrying groceries slimnastics, jazzer.  hunting, bow and arr. standiﬁg, talking dog sledding climbing hills

masonry, concrete pushing a wheelchair

2D Human Pose Estimation: New Benchmark
and State of the Art Analysis, CVPR 2014



Deep learning: 2014-now

e MoDeep: A Deep Learning Framework Using Motion Features for Human
Pose Estimation, Jain, Tompson, LeCun, Bregler

e DeepCut: Joint Subset Partition and Labeling for Multi Person Pose
Estimation, Pischulin et al. CVPR 2016




Progress: Bodies as 2D joints
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OpenPose, CMU 2017.



Are we our 2D joints?

“.... the motion of the
living body was
represented by a few
bright spots
describing the
motions of the main
joints.... 10—12 such
elements in adequate
motion combinations
... evoke a compelling
impression of human
walking, running,
dancing, etc.”

Gunnar Johansson, Visual perception of biological motion and a model

for its analysis, Perception & Psychophysics, 1973,



Today: 3D pose and shape



3D pose and shape from 1 image

Keep it SMPL: Automatic Estimation of 3D Human Pose and Shape from
a Single Image, Bogo, F., et al., ECCV 2016



Problem: No 3D ground truth

Kanazawa, Black, Jacobs, Malik, “End-to-End Recovery of
Human Shape and Pose,” CVPR 2018



Learning 3D from 2D annotations
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e 2D annotations of major joints are easy to get.
 Use them to learn 3D pose and shape from pixels?

Kanazawa, et al., End-to-End Recovery of Human Shape and Pose, CVPR'18



Learning 3D from 2D annotations

| Encoder

Regressiorj)

Shape || Camera

Produces
monsters.

Pose

s, R,T *d% Lreproj — ||.’B — if?||§
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Kanazawa, et al., End-to-End Recovery of Human Shape and Pose, CVPR'18



Learning 3D from 2D annotations
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Real human? l

Yes / no

Knowing what humans are (i.e. having a body model) lets
you solve pixels to 3D pose without any 3D training data.

Kanazawa, et al., End-to-End Recovery of Human Shape and Pose, CVPR'18



Kanazawa, Black, Jacobs, Malik, “End-to-End Recovery of
Human Shape and Pose,” CVPR 2018



Someone’s summary of Aristotle



Paraphrased from something | heard
Shimon Edelman say.






What’s our real goal?

Bodies,
Scenes

Actions,

Goals,
Costs

Affordances

We don’t really care about pose per se. Our goal is to infer
what can’t be seen — the goals, emotions, and the “story”.

Adapted from Shimon Edelman



Motion and emotion

Interaction between agents and of agents with the environment

Heider & Simmel, 1944
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2026

Realistic bodies with
expressive faces,
eyes, hands, hair, and
clothes.

Photorealistic,
detailed.

Autonomous agents.

Interaction with the
3D world and other
agents.

Goals, emotions,
speech,
communication.
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Early work

The Representation and Matching of Pictorial Structures, M.A.
Fischler ; R.A. Elschlager, IEEE Transactions on Computers, Volume:
C-22,Issue: 1, Jan. 1973

— https://ieeexplore.ieee.org/document/1672195

G. E. Hinton. Using relaxation to find a puppet. In Proc. of the
A.1.S.B. Summer Conference, pages 148-157, July 1976.

— http://files.is.tue.mpg.de/black/papers/HintonPuppet76.pdf

Marr and Nisihara, Representation and recognition of the spatial
organization of three-dimensional shapes, Proc. Royal Soc. B., 1978

— http://www.cog.brown.edu/courses/cg195/pdf files/CG195MaNi78.p
df

Nevatia and Binford, Sturctured descriptions of complex objects,
IJCAI 1973

— https://www.semanticscholar.org/paper/Structured-Descriptions-of-
Complex-Objects-Nevatia-

Binford/638693c63b7788133b0d0541cd65550ce91c20dd




Early work

Alex Pentland and Bradley Horowitz, Recovery of Nonrigid Motion
and Structure, PAMI, VOL. 13, NO. 7, JULY 1991

— https://www.computer.org/csdl/trans/tp/1991/07/i0730.pdf

K. Rohr, Towards Model-Based Recognition of Human Movements
in Image Sequences, CVGIP: Image Understanding, Volume 59, Issue
1, January 1994, Pages 94-115

— https://www.sciencedirect.com/science/article/pii/S10499660847100
60?via%3Dihub

Wachter & Nagel, Tracking of Persons in Monocular Image
Sequences, Nonrigid and Articulated Motion Workshop, 1997.
Proceedings., IEEE

— https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=609843

Bregler & Malik, Tracking People with Twists and Exponential Maps
Christoph Bregler and Jitendra Malik, CVPR 1998.

— https://people.eecs.berkeley.edu/~malik/papers/bregler-malik98.pdf




Early work

* Model-based vision: A program to see a walking
person, D Hogg, Image and Vision computing 1 (1), 5-
20

— https://www.sciencedirect.com/science/article/pii/026288
5683900033?via%3Dihub

e D. Gavrila, Vision-based 3-D Tracking of Humans in
Action, Ph.D. thesis

— http://www.gavrila.net/thesis.pdf

e Cardboard people: A parameterized model of
articulated motion, Ju, S. X., Black, M. J., Yacoob, Y.
Face and Gesture 1996.

— http://files.is.tue.mpg.de/black/papers/fg96.pdf




Stochastic estimation

Hedvig Sidenbladh, Michael J. Black, David J. Fleet, Stochastic
Tracking of 3D Human Figures Using 2D Image Motion, ECCV 2000

— http://files.is.tue.mpg.de/black/papers/eccv00.pdf

A multiple hypothesis approach to figure trackingT) Cham, JM Rehg,
CVPR 1999.

— http://www.hpl.hp.com/techreports/Compaq-DEC/CRL-98-8.pdf

Tracking through singularities and discontinuities by random

sampling J. Deutscher, B. North, B. Bascle and A. Blake, ICCV 1144-
1149 (1999).

— http://www.robots.ox.ac.uk/~vdg/abstracts/iccv99-deutscher.html

Covariance Scaled Sampling for Monocular 3D Body Tracking
Cristian Sminchisescu, Bill Triggs, CVPR 2001

— https://hal.inria.fr/file/index/docid/548273/filename/Sminchisescu-
cvprQl.pdf




Pose priors

* Ormoneit, Sidenbladh, Black, Hastie, Learning and Tracking
Cyclic Human Motion, NIPS 2001

— http://files.is.tue.mpg.de/black/papers/NIPS13.pdf

* 3D People Tracking with Gaussian Process Dynamical
Models, Urtasun, Fleet, Fua, CVPR 2006

— http://ttic.uchicago.edu/~rurtasun/publications/urtasun et al
cvpr06.pdf

* Modeling Human Motion Using Binary Latent Variables
Graham W. Taylor, Geoffrey E. Hinton and Sam Roweis, NIPS
2007

— http://www2.egr.uh.edu/~zhan2/ECE6111 Fall2015/modeling%
ZOdf}uman%ZOmotion%ZOUSing%ZObinary%ZOIatent%ZOvariables
-PaTt




Belief propagation

* Pedro F. Felzenszwalb, Daniel P. Huttenlocher, Pictorial
Structures for Object Recognition, IJCV, January
2005, Volume 61, Issue 1, pp 55-79
— https://link.springer.com/article/10.1023/B:VISI.00000429

34.15159.49

* Loose-limbed People: Estimating 3D Human Pose and
Motion Using Non-parametric Belief Propagation, Sigal,
L., Isard, M., Haussecker, H., Black, M. J., IJCV, 98(1):15-
48, May 2011

— http://www.springerlink.com/content/h6524h1n0gw5tv07
/fulltext.pdf




Ground truth datasets

HumanEva: Synchronized video and motion capture dataset and
baseline algorithm for evaluation of articulated human motion,
Sigal, L., Balan, A., Black, M. J.

— http://files.is.tue.mpg.de/black/papers/EHUM Journal webversion.pd
f

— http://humaneva.is.tue.mpg.de/

Catalin lonescu, Dragos Papava, Vlad Olaru and Cristian
Sminchisescu, Human3.6M: Large Scale Datasets and Predictive
Methods for 3D Human Sensing in Natural Environments, PAMI
2014

— http://vision.imar.ro/human3.6m/description.php

3D Poses in the Wild Dataset. Recovering Accurate 3D Human Pose
in The Wild Using IMUs and a Moving Camera, von Marcard and
Henschel and Black and Rosenhahn and Pons-Moll, ECCV 2018

— http://virtualhumans.mpi-inf. mpg.de/3DPW/

MPIl Human Pose Dataset
— http://human-pose.mpi-inf. mpg.de/




Early body shape models

* Tracking and Modeling People in Video Sequences, Ralf
Plankers and Pascal Fua, Computer Vision and Image

Understanding, Volume 81, Issue 3, March 2001, Pages 285-
302

— https://www.sciencedirect.com/science/article/pii/S107731420
0908919

e Model-Based Estimation of 3D Human Motion loannis
Kakadiaris, and Dimitris Metaxas, PAMI VOL. 22, NO. 12,
Dec 2000

— http://www.cbim.rutgers.edu/dmdocuments/21%20Kakadiaris
%20IEEE.pdf

* Blanz and Vetter, A Morphable Model For The Synthesis Of
3D Faces, SIGGRAPH 1999

— http://gravis.dmi.unibas.ch/publications/Sigg99/morphmod?2.pd
f




Learning body shape

CAESAR dataset
— http://store.sae.org/caesar/

The space of human body shapes:
reconstruction and parameterization from range scans, Brett Allen,
Brian Curless, Zoran Popovi¢, SIGGRAPH 2003

— http://grail.cs.washington.edu/projects/digital-
human/pub/allen03space.html

Learning a correlated model of identity and pose-dependent body
shape variation for real-time synthesis, Brett Allen, Brian Curless,
Zoran Popovic, and Aaron Hertzmann, SCA 2006

— http://grail.cs.washington.edu/projects/digital-
human/pub/allen06learning.html

Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian
Thrun, Jim Rodgers, and James Davis. 2005. SCAPE: shape
completion and animation of people. ACM Trans. Graph. 24, 3 (July
2005)

— https://ai.stanford.edu/~drago/Projects/scape/scape.html




Learning body shape

A Statistical Model of Human Pose and Body Shape N. Hasler, C.
Stoll, M. Sunkel, B. Rosenhahn, and H.-P. Seidel, EUROGRAPHICS
2009

— https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-
8659.2009.01373.x

(Tenbo) Tensor-Based Human Body Modeling Yinpeng Chen Zicheng
Liu Zhengyou Zhang, CVPR 2013

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.679.706
4&rep=repl&type=pdf

(BlendSCAPE) Coregistration: Simultaneous Alignment and
Modeling of Articulated 3D Shape David A. Hirshberg, Matthew
Loper, Eric Rachlin, and Michael J. Black, ECCV 2012

— http://files.is.tue.mpg.de/black/papers/HirshbergECCV2012.pdf

SMPL: A Skinned Multi-Person Linear Model, Loper et al., SIGGRAPH
Asia 2015

— http://smpl.is.tue.mpg.de/




Evolution of body models

e (soft tissue) Dyna: A Model of Dynamic Human
Shape in Motion, Pons-Moll et al, SIGGRAPH 2015

— http://files.is.tue.mpg.de/black/papers/dyna.pdf
* (clothing) ClothCap: Seamless 4D Clothing

Capture and Retargeting, Pons-Moll, G., Pujades,
S., Hu, S., Black, M.J., SIGGRAPH, 2017.

— http://clothcap.is.tue.mpg.de/

e (infants) Hesse, et al., Learning an Infant Body
Model from RGB-D Data for Accurate Full Body
Motion Analysis, MICCAI 2018

— http://files.is.tue.mpg.de/black/papers/miccail8.pdf




RGB-D

* Real-Time Human Pose Recognition in Parts from Single
Depth Images, Shotton et al., CVPR 2011

— https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/BodyPartRecognition.pdf

* Home 3D body scans from noisy image and range data,
Weiss, A., Hirshberg, D., Black, M. ICCV 2011

— http://files.is.tue.mpg.de/black/papers/KinectICCV2011.pdf

* Detailed Full-Body Reconstructions of Moving People from
Monocular RGB-D Sequences, Bogo, F., Black, M. J., Loper,
M., Romero, J., ICCV 2015

— https://ps.is.tuebingen.mpg.de/uploads file/attachment/attach
ment/235/2262.pdf




Shape and pose from images

* Detailed Human Shape and Pose from Images, Balan,
A., Sigal, L., Black, M. J., Davis, J., Haussecker, H., CVPR
2007

— http://files.is.tue.mpg.de/black/papers/balan07imscape.p
df

 Keep it SMPL: Automatic Estimation of 3D Human Pose
and Shape from a Single Image, Bogo et al., ECCV 2016,
— http://smplify.is.tuebingen.mpg.de/

* End-to-end Recovery of Human Shape and Pose,
Kanazawa, et al., CVPR 2018

— https://akanazawa.github.io/hmr/




2D deep pose from images

* MoDeep: A Deep Learning Framework Using Motion
Features for Human Pose Estimation, Arjun Jain,

Jonathan Tompson, Yann LeCun and Christoph Bregler,
— https://arxiv.org/pdf/1409.7963.pdf

* DeepCut: Joint Subset Partition and Labeling for Multi
Person Pose Estimation. Pishchulin et al. CVPR 2016

— https://arxiv.org/abs/1511.06645

* OpenPose: Realtime Multi-Person 2D Pose Estimation

using Part Affinity Fields, Zhe Cao, Tomas Simon, Shih-
En Wei, Yaser Sheikh, CVPR 2017

— https://arxiv.org/abs/1611.08050




Early 2D ML methods

* “Pedestrian detection using wavelet templates,”
Oren et al CVPR’97.

— https://dl.acm.org/citation.cfm?id=794507

e Detecting pedestrians using patterns of motion
and appearance, Viola, Jones and Snow, ICCV’03
— https://ieeexplore.ieee.org/document/1238422

* Histograms of Oriented Gradients for Human

Detection Navneet Dalal and Bill Triggs, CVPR
2005

— https://lear.inrialpes.fr/people/triggs/pubs/Dalal-
cvprO5.pdf




Synthetic training

Automatic Detection and Tracking of Human Motion with a View-
Based Representation Ronan Fablet and Michael J. Black, ECCV
2002

— http://files.is.tue.mpg.de/black/papers/23500476.pdf

3D Human Pose from Silhouettes by Relevance Vector Regression
Ankur Agarwal, Bill Triggs, CVPR0O4

— https://hal.inria.fr/inria-00548551/document

“Fast Pose Estimation with Parameter Sensitive Hashing”,
Shakhnarovich, G., Viola, P., & Darrell, T. ICCV’03.

— http://ttic.uchicago.edu/~gregory/papers/iccv2003.pdf

Recovering Accurate 3D Human Pose in The Wild Using IMUs and a
Moving Camera, von Marcard et al., ECCV 2018

— http://virtualhumans.mpi-inf.mpg.de/3DPW/

Learning from Synthetic Humans, Varol, G. et al., CVPR 2017
— http://www.di.ens.fr/willow/research/surreal/




Understanding behavior

 An Experimental Study of Apparent Behavior,
Fritz Heider and Marianne Simmel,
The American Journal of Psychology, Vol. 57, No.
2 (Apr., 1944), pp. 243-259
— https://www.jstor.org/stable/14169507?seq=1#metada
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* G. Johansson, Visual perception of biological

motion and a model for its analysis, Perception &

Psychophysics, June 1973, Volume 14, Issue 2, pp
201-211

— https://link.springer.com/article/10.3758/BF03212378




