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THOMAS HARIOT (1560-1621)

Hariot's work on binary and other r-ary arithmetic

was done about 1600 A.D.; it was not published and,

since it was not to come to light until the computer

age was well under way, failed to have any direct in-

fluence on the development of this topic. Yet it is

worth mentioning--especially in view of the great pride

Leibniz was to take 100 years later (in 1703) in pub-

lishing "Explication de l'arithm6tique binaire."

Fontenelle, the editor of the journal involved, not

only hailed this arithmetic as new, but felt obliged

to mention one Thomas Fantet de Lagny (1660-1734), who

had discovered binary arithmetic independently, but

had sent in his paper after Leibniz.'s. Fontenelle's

attempt to thus forestall a priority fight between

Leibniz and Lagny seems rather futile considering that

all three (and seemingly everyone else) had overlooked

"Meditatio," a chapter in Bishop Caramuel y Lobkowitz's

book Mathess biceps

published in Italy in

1670. Here the Bishop
Octonaria Denaria

had asked: "Is there
1 1

one arithmetic or are
2 2

there many?" He con-
4 4

cluded there were many--
10 8

arithmetics of base 2,
20 16

3, 4, 5, 6, 7, 8, 9,
40 32

12 and 60, for example.
100 64

He showed number re-

presentations in each

of these.

While Bishop Caramuel

had beaten Leibniz by

33 years in publishing

on this topic, the

Englishman Harlot, to

4 000 000 000 536 870 912

Fig. 1. Portion of table
transcribed from BM (British
Museum) Harlot MS 6782, Folio
No. 1.



whom we want to return now, had worked on it in his

manuscripts about 100 years before that 1703 article.

Figure 1 shows some work with octal number represen-,

tations from one of the more than 5000 folio-sized

pages of Hariot manuscripts. Figure 2 shows some

'base 3' tables, which Hariot had placed amidst some

work on binary arithmetic. Other examples of binary

arithmetic can be found on portions of MS 6782 f.247,

MS 6788 f. 245, and MS 6786 f. 347. The binary arith-

metic shown on the last named folio was already brought

to light through J.W. Shirley's 1951 article in the

Journal of Physics. This included the details of the

multiplication of

1101101 x 1101101 = 10111001101001

109 x 109 = 11881.

1 1

2 2

10 3

11 4

12 5

20 6

21 7

22 8

100 9

1 1

10 3

100 .9

1000 27

10000 81

Fig. 2. Tables transcribed from BM Hariot MS 6786
Folio No. 517. It shows number representations in
base 3 and their equivalents in base 10.
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As we have seen, the work on this topic is widely

scattered among unrelated calculations within Hariot's

manuscripts. One finds doodling and repetition.

It is doubtful that the work on this or other topics

appears in chronological order. It seems that blank

portions of some pages were filled in later with un-

related work.

Some of the work

scattered elsewhere 16 16
1 1 17 15+1

in his manuscripts 2 2 18 16+2
3 2+1 19 16+2+1

may, however, be 4 4 20 16+4
5 4+1 21 16+4+1

related directly to 6 4+2 22 16+4+2
7 4+2+1 23 16+4+2+1

Hariot's work on 8 8 24 16+8
9 8+1 25 16+8+1

binary arithmetic. 10 8+2 26 1648+2
11 8+2+1 27 16+8+2+1

The strongest 12 8+4 28 16+8+4
13 8+4+1 29 16+8+4+1

example that I have 14 8+4+2 30
I

16+8+4+2
15 8+4+2+1 31 16+8+4+2+1

found appears in

Figure 3, where it

seems that he was

convincing himself

that natural numbers may be expressed as the sum of

powers of two.

What the British Museum has designated as MS 6783

consists of 426 folios. After folio 29, Hariot seems

preoccupied with systematically listing all possible

combinations (non-empty subsets) of n things. He would

do so, for n = 1, 2, 3, 4, and 5 and then append a

vigorous "etc." as if to say:

Fig. 3. Table transcribed
from Eariot ns 6783 f.29. kca.1600 A.D.)

The truth when it is seen

is known without other evidence.

Indeed, this sentence appears in Hariot's handwriting

on MS 6788 f. 132. One of Hariet's techniques of list-

ing combinations is illustrated here for n=3:
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b

ab

a

ac
be
abc

He soon shifted to techniques that used the symbols

+ and -. Again he would do this for n=1 to n=5 and

append his "etc." In Figure 4 one such technique is

illustrated for n=3. He seems to imagine that the

three columns are headed a, b, and c. A "plus" would

mean "yes, this letter is included" and a "minus" that

"no, the letter is not included."

to include the empty set,

his focus is on the 7

(or in general the 2n-1)

non-empty subsets. His

bracket and "7" would so

indicate.

Figure 5 shows a

variation of this

technique which brought

Hariot to a "binary

order," albeit in

reverse.. If we re-

place "minus" by "0"

and "plus" by "1" we

get the eight 3-bit

C,^

While this seems

ig. 4. Traaacrtho
from MS 6783 f.407.

strings from 111 to

000.

Whether Hariot him-

+ +
+ +
+ -
+ - 7+ +

self connected his com- +
4bination listings with

his binary arithmetic Fig. 5. Transcribed

or even with his table from MS 6783 f. 98

of Fig. 3 is not clear.
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Several pages of Hariot's work deal with infinite

series and may or may not have been connected with his

interest in r-ary arithmetic. One example of this

1

1

1 +

1 1 1 1

+ + ,

-I-

, II =

=

=

2 4 8

1 1

16

J. I

1

9 27

1 1

+ TOT + IWO

' 81

10

Fig. 6. Transcribed from MS 6784 f.428.

1

1 4. 1 =

3
1 = 2

1
1 10

9 9

is shown in Figure 6. Apparently he was convincing

himself that

1 +
r

+ I +
1 1

=
r
4 1 r-1

for any base or radix r. In more compact notation:

(1. 1 1 11... )r
r

r - 1

r

r - 1

We turn next to Sir Francis Bacon, who invented a code

with which one could hide secret messages inside of

some cover text. The modern reader sees this as a binary

code, similar to the alpha-numeric codes used in com-

puters. Bacon's code enjoyed some noteriety for its

misuse by Baconians who 'discovered' secret messages

'proving' their contention that Bacon had written

Shakespeare's plays.
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FRANCIS BACON--HIS BILITERAL CODE OF 1 6 2 3

I II III

0 AAAAA a

1 AAAAB b

2 AAABA

3 AAABB d

4 AABAA

5 AABAB 6

6 AABBA

7 AABBB h

8 ABAAA 4

9 ABAAB j

10 ABABA h

11 ABABB t

12 ABBAA

13 AB8AB

14 ABBBA

15 ABBBB

16 BAAAA

17 BAAAB A

18 BAABA

19 BAABB t

20 BABAA

21 BABAB

22 BABBA w

23 BABBB

24 BBAAA

25 BBAAB

26 BBABA

27 BBABB

28 BBBAA

29 BBBAB

30 BBBBA

31 BBBBB

Column II lists the 32 possible

5-letter, biliteral 'words' from

AAAAA to BBBBB. Bacon called these

'words' biliteral because they con-

tained only the two letters, A and B.

The first 26 of these have been

assigned to the 26 letters of our

modern alphabet. The original Bacon

code differed slightly, since j and

u were not part of the 1623 alphabet.

Please note that BAABA BAABB AAAAA

BBAAA hides the message stay. Also

note that the coded version is five

times as long as the hidden message,

since each character of the hidden

message is coded into a 5-letter bi-

literal word.

The biliteral words in turn can be

hidden in any other plain message of

equal or greater length. We shall

hide BAABA BAABB AAAAA BBAAA in the

plain message GO AT ONCE TO WAR-

MINSTER, which has the requisite 20

characte::s. We shall replace each A

by a capital letter and each B by

a lower case letter, with the follow-

ing result:

-6-
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To summarize,

the overt message g0 At OnCE to WARMInsTER

hides the code BA AB ABAA BB AAAAABBAAA

which in turn hides
the secret message S T AY

Problem No. 1 Find the Go At ONcE TO WaRmiNsTer
secret message hidden

in the overt message shown

at the right.

Problem No. 2 Find the

secret message in: oGOnTz CAmpUS IS BeaUTIful

If you have been able to do problems 1 and 2, then

you understand the Bacon code sufficiently for our

purposes. Problems 3 and 4 make greater demands on

recognizing differences between closely related

typstyles. For problem 3:

typestyle A: italic

typestyle B:. roman

Problem No. 3 Find the

secret message in: I hate you Jim Hendershot

For problem 4:

typestyle A: abcdefghijkZmnopqrstuvwxyz

typestyle B: abcdelighijiamnoportuvwxyz

Problem No. 4 Find the

secret message in:
Penn.sylvania State University
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That we are justified in calling Bacon's code a

binary one becomes clear upon observing that "A"

and "B" could have been replaced by "0" and "1". We

could have spoken of typestyles 0 and 1. Moreover,

when the replacement is made, then column I (see page 6)

is simply the decimal equivalent of column II. For the

misuse to which this code was put by the Baconians, we

refer the reader to Kahn's The Codebreakers.

A rough idea of this misuse can be gotten by ob-

serving the following: Paper and printing methods were

poor in Shakespeare's days. Many letters in his first

folio were defective for one of several reasons:

(i) unequal shrinkage of the paper that wouli4

make one "o" look smaller than another "o"

(ii) defects in typeface

(iii) poor flow of ink.

The Baconian, hoping to find a short secret message in

such a book, would assume that perfect letters were

typestyle A and defective ones typestyle B (or vice

versa). The whole book could then be viewed as one

very long biliteral word or binary string. If he then

took sufficient liberties as to where the supposed se-

cret message was hidden and liberties as to whether or

not to declare a particular letter defective, then he

could find any short message he wanted.

AFTER BACON TO THE COMPUTER AGE

Binary arithmetic entered the mainstream of mathe-

matics with Leibniz's 1703 article and Fontenelle's

attendant fanfare. It stimulated only a handful of

follow -up articles during the next century--quite con-

trary to Leibniz's hopes. lie had believed that binary

arithmetic would prove to be a useful research tool

and would help settle such then outstanding questions

as the irrationality of the number n.

-8-
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Nevertheless this handful sufficed to cause Gauss

to dismiss r-ary (for 1.10) expressions in the following

footnote:

For brevity we will restrict the following discussion to
the system which is commonly called decimal, but it can
easily be extended to any other.

This footrote appeared on page 377 of Disquisitiones

Arithmeticae and referred to paragraph 312, in which the

periods of the decimal equivalents of rational fractions

were being treated. This was in 1801.

Some of this handful of writers between Leibniz and

Gauss deserve special mention. Euler divided (1+27+23)

into (232+1). He found the result to be the whole number

(1+27+26+210+211+212+213+217+216+221222)

and thus spoiled the Fermat Conjecture which assumed

that (232+1) would be prime. Euler was doing binary

arithmetic in expanded notation. In 1764 Etienne Bezout's

Course de mathgmatique showed refined techniques for

converting from one base to any other base that left

no room for further improvement except for special cases

such as converting from base 2 to a base that is a power

of 2. That this is particularly easy was demonstrated

through an example (in a mere footnote) by Legendre in

his Essai sur la thgorie des nombre in 1798. Actually,

the insight involved is no more profound than that

involved in our readiness to read "1984" as 19 hundred

and 84, thus interpreting a base 10 expression as if it

were a base 100 expression.

After Gauss, the following deserve special mention.

Peter Barlow's 1811 An Elementary Investigation of the

Theory of Numbers contained an entire chapter "On the

different Scales of Notation and their Application to

the Solution of Arittmeticn1 Problv:s." iu 1353
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Augustus DeMorgan's The Elements of Arithmetic appeared.

It is probably the earliest school text in the English

language to include nondecimal numeratior. As DeMorgan

was tc: A,-rite later:

The student should accustom himself to work question% in
different systems of numeration, which will give him clearer
irsight into the nature of arithmetical processes than he
could obtain by any other methood.

.Starting with 1875 the Zeitachrift fur Nathematik and

Physik carried an exchange between Moritz Cantor (the

mathematical historian) and a secondary teacher from

Berlin, Felix Mailer. The former had reported that it

was the binary system that was behind certain "Tell

your age" cards he had seen demonstrated at a carnival.

The latter produced sophisticated variations on these

he had for some time been using with his 11th graders

in Berlin. These cards had for him been an outgrowth

of some difficult algebraic identities he had covered

with his students. In 1899 Giuseppe Peano (known to

most undergraduate mathcmatids students for his "Peano

Axiom', ") proposed a new system of stenography that

had the binary system as its foundation. Charles L.

Bouton (1901) wrote an article on the game NIM, whose

complete mathematical theory involved '0.0.y arithmetic.

Improved and generalized versions of this appeared in

a steady stream from other mathematicians during the

next 70 years.

Thus, when the computer age began in 1946, binary

and other r-ary arithmetic was well known in the mathe-

matical community.

This paper is based on research done for my History of Binary
'and Other Nondecimal Numeration (published in 1971) and further
research 'since that time -- especially examination of a full set of
Hariot manuscripts during my recent sabbatical leave.
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