Bijektio on funktio, jossa jokaista funktion parametria vastaa yksi tulosarvo ja kääntäen jokainen maalijoukon alkio on täsmälleen yhden alkion kuva. [1]

Bijektio

Bijektio on siis yhtä aikaa sekä injektio että surjektio:

  • Injektio: mitkään kaksi lähtöjoukon alkiota eivät kuvaudu samalle maalijoukon alkiolle. [1]
  • Surjektio: jokaiselle maalijoukon alkiolle kuvautuu jokin lähtöjoukon alkio. [1]

Bijektiossa jokainen maalijoukon alkio on täsmälleen yhden alkion kuva. Jokaista funktion parametria vastaa yksi tulosarvo ja kääntäen.

Käänteisfunktio

muokkaa

Jos funktio f on bijektio

 ,

voidaan sille määrittää käänteisfunktio

 

jolloin käänteisen kuvauksen kaikki joukon   alkiot saavat arvon maalijoukossa  . Myös käänteisfunktio on bijektio.

Esimerkkejä

muokkaa

Funktio fR → R, f (x)  = 2x   1, on bijektio, koska jokaista reaalilukua y kohden voidaan ratkaista yhtälö y = 2x   1 ja saadaan tasan yksi reaalinen vastaus x = (y − 1)/2.

Funktio gR → R, g(x) = x2, ei ole bijektio. Tämä funktio ei ole injektio, koska funktio saa saman arvon kahdella eri muuttujan arvolla: esimerkiksi g(1) = 1 = g(−1). Toisaalta funktio ei ole surjektio, koska havaitaan esimerkiksi, ettei ole reaalilukua x, jolle x2 = −1. Kumpi tahansa näistä seikoista riittää osoittamaan, että funktio g ei ole bijektio. Jos kuitenkin muutetaan funktion g lähtö- ja maalijoukko siten, että pätee g: [0, ∞) → [0, ∞), funktio g on bijektio.

Katso myös

muokkaa

Lähteet

muokkaa

Viitteet

muokkaa
  1. a b c Häsä, Jokke & Rämö, Johanna: Johdatus abstraktiin algebraan, s. 23. Helsinki: Gaudeamus, 2015. ISBN 978-952-495-361-0

Kirjallisuutta

muokkaa
  • Merikoski, Jorma; Virtanen, Ari; Koivisto, Pertti: Diskreetti matematiikka I. Tampere: Tampereen yliopisto, 2001 (1993). ISBN 951-44-3604-0