
July 19, 2024 Denver

We Cannot Write Secure Applications

Michael Catanzaro (mcatanzaro@gnome.org)



We Cannot Write Secure Applications 2

Presentation Outline

Memory Safety
Supply Chain Security
Sandboxing



We Cannot Write Secure Applications 3

Memory Safety



We Cannot Write Secure Applications 4

Memory Safety 101

Unsafe languages: C, C++, Vala
Safe languages: JavaScript, Python, Rust
In unsafe languages, common errors allow attackers to control users’ computers
Attacking is hard; I’m a defender and don’t know much about attacking
Defenders simply assume every memory safety error is a security vulnerability

Write errors: code execution exploits
Read errors: leak sensitive data or facilitate exploitation of write errors



We Cannot Write Secure Applications 5

Memory Safety 101: Unrealistic Example Errors

Buffer overflow

int data[42];
data[42] = 0;

Use after free

int *data = malloc ();
free (data);
data[0] = 0;



We Cannot Write Secure Applications 6

Memory Safety 101

High-risk applications: Epiphany, Totem/Showtime, Evince/Papers
Our errors have serious consequences for users



We Cannot Write Secure Applications 7

Common Mistake #1: Failure to Disconnect Signal Handler

static void
some_signal_cb (gpointer user_data)
{

A *self = user_data;
a_do_something (self);

}

static void
some_method_of_a (A *self)
{

B *b = get_b_from_somewhere ();
g_signal_connect (b, "some-signal", (GCallback)some_signal_cb, a);

}



We Cannot Write Secure Applications 8

Solution to Mistake #1: g_signal_connect_object() or
g_clear_signal_handler()

static void
some_signal_cb (gpointer user_data)
{

A *self = user_data;
a_do_something (self);

}
static void
some_method_of_a (A *self)
{

B *b = get_b_from_somewhere ();
g_signal_connect_object (b, "some-signal",

(GCallback)some_signal_cb, a, 0);
}



We Cannot Write Secure Applications 9

Common Mistake #2: Misuse of GSource Handler ID

static gboolean
my_timeout_cb (gpointer user_data)
{

A *self = user_data;
a_do_something (self);
return G_SOURCE_REMOVE;

}

static void
some_method_of_a (A *self)
{

g_timeout_add (42, (GSourceFunc)my_timeout_cb, a);
}



We Cannot Write Secure Applications 10

Non-preferred Solution to Mistake #2: Ref the User Data

static gboolean
my_timeout_cb (gpointer user_data)
{

A *self = user_data;
a_do_something (self);
g_object_unref (a);
return G_SOURCE_REMOVE;

}
static void
some_method_of_a (A *self)
{

g_timeout_add (42, (GSourceFunc)my_timeout_cb, g_object_ref (a));
}



We Cannot Write Secure Applications 11

Better Solution to Mistake #2: g_clear_handle_id()

static void
some_method_of_a (A *self)
{

a->my_timeout_id = g_timeout_add (42, (GSourceFunc)my_timeout_cb, a);
}

static void
a_dispose (GObject *object)
{

A *a = (A *)object;
g_clear_handle_id (&a->my_timeout_id, g_source_remove);
G_OBJECT_CLASS (a_parent_class)->dispose (object);

}



We Cannot Write Secure Applications 12

Common Mistake #3: Failure to Cancel Asynchronous Function

static void
some_method_of_a (A *self)
{

B *b = get_b_from_somewhere ();
b_do_something_async (b, NULL /* cancellable */, a);

}



We Cannot Write Secure Applications 13

Non-preferred Solution to Mistake #3: Ref the User Data

static void
some_method_of_a (A *self)
{

B *b = get_b_from_somewhere ();
b_do_something_async (b, NULL, g_object_ref (a)); // unref in callback

}



We Cannot Write Secure Applications 14

Better Solution to Mistake #3: GCancellable

static void
some_method_of_a (A *self)
{

B *b = get_b_from_somewhere ();
b_do_something_async (b, a->cancellable, a);

}
static void
a_dispose (GObject *object)
{

A *a = (A *)object;
g_cancellable_cancel (a->cancellable);
g_clear_object (&a->cancellable);
G_OBJECT_CLASS (a_parent_class)->dispose (object);

}



We Cannot Write Secure Applications 15

Better Solution to Mistake #3: GCancellable
static void
something_finished_cb (GObject *source_object,

GAsyncResult *result,
gpointer user_data)

{
B *b = (B *)source_object;
A *self = user_data;
g_autoptr (GError) error = NULL;
if (!b_do_something_finish (b, result, &error)) {

if (!g_error_matches (error, G_IO_ERROR, G_IO_ERROR_CANCELLED))
g_warning ("Failed to do something: %s", error->message);

return;
}
a_do_something_else (self);

}



We Cannot Write Secure Applications 16

Common Mistake #4: Incorrect Use of GMainContext

Study the main context tutorial thoroughly, especially if developing a library
https://developer.gnome.org/documentation/tutorials/main-contexts.html

https://developer.gnome.org/documentation/tutorials/main-contexts.html


We Cannot Write Secure Applications 17

Common Mistake #5: Failure to Disconnect Weak Pointer

static void
a_start_watching_b (A *self,

B *b)
{

self->b = b; // When b is destroyed, self->b will be set to NULL.
g_object_add_weak_pointer (b, &self->b);

}
static void
a_do_something_with_b (Foo *self)
{

if (self->b)
// Do something safely here, knowing that b is still alive.

}



We Cannot Write Secure Applications 18

Solution to Mistake #5: g_clear_weak_pointer()

static void
a_dispose (GObject *object)
{

A *a = (A *)object;
g_clear_weak_pointer (&a->b);
G_OBJECT_CLASS (a_parent_class)->dispose (object);

}



We Cannot Write Secure Applications 19

Mitigating Memory Safety Errors

Sandboxing
Toolchain hardening
Static analysis (scan-build, Coverity, etc.)
Dynamic analysis (address sanitizer, other sanitizers, valgrind memcheck) with
code coverage
Fuzzing (for parsers)
Enable assertions in production (except slow assertions)
Use g_log_set_always_fatal(G_LOG_LEVEL_CRITICAL) (except in libraries)
Consider Rust or other safe languages



We Cannot Write Secure Applications 20

Supply Chain Security



We Cannot Write Secure Applications 21

Be Careful with Bundled Dependencies

Your application is only as secure as its least secure dependency
Memory safety doesn’t matter if just one dependency is malicious
Our Rust apps have too many dependencies

glycin-loaders has 286 cargo dependencies
librsvg has 283 cargo dependencies
loupe has 258 cargo dependencies
snapshot has 266 cargo dependencies

Rust developers: please talk to other Rust developers about this problem!
A CVE in a shared library requires one update to fix. Same CVE in a static library
requires updating everything separately.



We Cannot Write Secure Applications 22

Sandboxing



We Cannot Write Secure Applications 23

The Flatpak Sandbox is Good

Sandbox is a contained environment constructed to ensure a compromised
application can only do bad stuff within the sandbox
Sandbox escape is required to harm the host system
Sandboxing is a defense in depth layer and never a primary security mechanism
Sandboxing does not excuse security bugs or outdated dependencies



We Cannot Write Secure Applications 24

Typical Example: LibreOffice



We Cannot Write Secure Applications 25

Why Do We Keep Subverting the Flatpak Sandbox?

It’s been 6 years since flatkill.org first complained the Flatpak sandbox is a lie. It’s
still true today!
User trust in trust the Flatpak ecosystem is currently misplaced.
We must collaborate on portal development instead of punching more sandbox
holes.
Flathub needs to make unsafe permissions (e.g. --filesystem= or
--talk-name=) much scarier.
Eventually we should delist of applications that use unsafe permissions.
But we also need a strategy for applications that legitimately cannot be
sandboxed.



We Cannot Write Secure Applications 26

Counterexample. . .



We Cannot Write Secure Applications 27

Call for Action

Distro maintainers: consider shipping applications using Flatpak
Flatpak manifest maintainers: keep dependencies updated using
flatpak-external-data-checker
Rust developers: talk to other Rust developers about dependencies
C/C++ developers: use static and dynamic analysis tools; enable assertions in
production


	Memory Safety
	Supply Chain Security
	Sandboxing

