Wikipedia, Entziklopedia askea
Matematikan , serie teleskopiko bat serie bat da non batura partzialek termino-kopuru finko bat duten ezeztatu ondoren.
(
a
2
−
a
1
)
(
a
3
−
a
2
)
(
a
4
−
a
3
)
…
(
a
n
−
a
n
−
1
)
=
a
n
−
a
1
{\displaystyle (a_{2}-a_{1}) (a_{3}-a_{2}) (a_{4}-a_{3}) \ldots (a_{n}-a_{n-1})=a_{n}-a_{1}\,}
Serie teleskopikoaren ohiko adibide bat Mengoliren seriea da, honela definitzen dena:
∑
n
=
1
∞
1
n
(
n
1
)
{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n(n 1)}}}
honela kalkula daitekeena:[ 1]
∑
n
=
1
∞
1
n
(
n
1
)
=
∑
n
=
1
∞
(
1
n
−
1
n
1
)
=
lim
N
→
∞
∑
n
=
1
N
(
1
n
−
1
n
1
)
=
lim
N
→
∞
[
(
1
−
1
2
)
(
1
2
−
1
3
)
⋯
(
1
N
−
1
N
1
)
]
=
lim
N
→
∞
[
1
(
−
1
2
1
2
)
(
−
1
3
1
3
)
⋯
(
−
1
N
1
N
)
−
1
N
1
]
=
lim
N
→
∞
[
1
−
1
N
1
]
=
1.
{\displaystyle {\begin{aligned}\sum _{n=1}^{\infty }{\frac {1}{n(n 1)}}&{}=\sum _{n=1}^{\infty }\left({\frac {1}{n}}-{\frac {1}{n 1}}\right)\\{}&{}=\lim _{N\to \infty }\sum _{n=1}^{N}\left({\frac {1}{n}}-{\frac {1}{n 1}}\right)\\{}&{}=\lim _{N\to \infty }\left\lbrack {\left(1-{\frac {1}{2}}\right) \left({\frac {1}{2}}-{\frac {1}{3}}\right) \cdots \left({\frac {1}{N}}-{\frac {1}{N 1}}\right)}\right\rbrack \\{}&{}=\lim _{N\to \infty }\left\lbrack {1 \left(-{\frac {1}{2}} {\frac {1}{2}}\right) \left(-{\frac {1}{3}} {\frac {1}{3}}\right) \cdots \left(-{\frac {1}{N}} {\frac {1}{N}}\right)-{\frac {1}{N 1}}}\right\rbrack \\{}&{}=\lim _{N\to \infty }\left\lbrack {1-{\frac {1}{N 1}}}\right\rbrack =1.\end{aligned}}}
Izan bedi zenbaki-sekuentzia bat
a
n
{\displaystyle a_{n}}
. Orduan,
∑
n
=
1
N
(
a
n
−
a
n
−
1
)
=
a
N
−
a
0
,
{\displaystyle \sum _{n=1}^{N}\left(a_{n}-a_{n-1}\right)=a_{N}-a_{0},}
eta, baldin
a
n
→
0
{\displaystyle a_{n}\rightarrow 0}
∑
n
=
1
∞
(
a
n
−
a
n
−
1
)
=
−
a
0
.
{\displaystyle \sum _{n=1}^{\infty }\left(a_{n}-a_{n-1}\right)=-a_{0}.}
Serie teleskopikoak teknika erabilgarria izan daitezkeen arren, eragozpen batzuk izan daitezke. Honako prozedura
0
=
∑
n
=
1
∞
0
=
∑
n
=
1
∞
(
1
−
1
)
=
1
∑
n
=
1
∞
(
−
1
1
)
=
1
{\displaystyle 0=\sum _{n=1}^{\infty }0=\sum _{n=1}^{\infty }(1-1)=1 \sum _{n=1}^{\infty }(-1 1)=1\,}
ez da zuzena, zeren eta terminoak multzokatzeko modu horrek balioa izateko, terminoak bereizita 0 balioa izan behar du. Akats hori saihesteko, lehenik eta behin, lehenengo N terminoen batura aurkitu behar da, eta, bigarrenik, N -rekiko limitea aplikatu, infiniturantz hurbilduz.
∑
n
=
1
N
1
n
(
n
1
)
=
∑
n
=
1
N
(
1
n
−
1
n
1
)
=
(
1
−
1
2
)
(
1
2
−
1
3
)
⋯
(
1
N
−
1
N
1
)
=
1
(
−
1
2
1
2
)
(
−
1
3
1
3
)
⋯
(
−
1
N
1
N
)
−
1
N
1
=
1
−
1
N
1
→
1
c
u
a
n
d
o
N
→
∞
.
{\displaystyle {\begin{aligned}\sum _{n=1}^{N}{\frac {1}{n(n 1)}}&{}=\sum _{n=1}^{N}\left({\frac {1}{n}}-{\frac {1}{n 1}}\right)\\&{}=\left(1-{\frac {1}{2}}\right) \left({\frac {1}{2}}-{\frac {1}{3}}\right) \cdots \left({\frac {1}{N}}-{\frac {1}{N 1}}\right)\\&{}=1 \left(-{\frac {1}{2}} {\frac {1}{2}}\right) \left(-{\frac {1}{3}} {\frac {1}{3}}\right) \cdots \left(-{\frac {1}{N}} {\frac {1}{N}}\right)-{\frac {1}{N 1}}\\&{}=1-{\frac {1}{N 1}}\to 1\ \mathrm {cuando} \ N\to \infty .\end{aligned}}}
Funtzio trigonometriko asko ezberdintasun gisa adieraz daitezke, eta, horri esker, serie teleskopikoan elkarren segidako terminoen arteko deuseztapena egin daiteke.
∑
n
=
1
N
sen
(
n
)
=
∑
n
=
1
N
1
2
csc
(
1
2
)
(
2
sen
(
1
2
)
sen
(
n
)
)
=
1
2
csc
(
1
2
)
∑
n
=
1
N
(
cos
(
2
n
−
1
2
)
−
cos
(
2
n
1
2
)
)
=
1
2
csc
(
1
2
)
(
cos
(
1
2
)
−
cos
(
2
N
1
2
)
)
.
{\displaystyle {\begin{aligned}\sum _{n=1}^{N}\operatorname {sen} \left(n\right)&{}=\sum _{n=1}^{N}{\frac {1}{2}}\csc \left({\frac {1}{2}}\right)\left(2\operatorname {sen} \left({\frac {1}{2}}\right)\operatorname {sen} \left(n\right)\right)\\&{}={\frac {1}{2}}\csc \left({\frac {1}{2}}\right)\sum _{n=1}^{N}\left(\cos \left({\frac {2n-1}{2}}\right)-\cos \left({\frac {2n 1}{2}}\right)\right)\\&{}={\frac {1}{2}}\csc \left({\frac {1}{2}}\right)\left(\cos \left({\frac {1}{2}}\right)-\cos \left({\frac {2N 1}{2}}\right)\right).\end{aligned}}}
Forma honetako batuketa batzuk
∑
n
=
1
N
f
(
n
)
g
(
n
)
,
{\displaystyle \sum _{n=1}^{N}{f(n) \over g(n)},}
non f eta g funtzio polinomikoak baitira eta horien zatidura zati partzialetan bereiz baitaiteke, ez dute onartzen metodo horren bidez batuketarik egitea. Zehazki,
∑
n
=
0
∞
2
n
3
(
n
1
)
(
n
2
)
=
∑
n
=
0
∞
(
1
n
1
1
n
2
)
=
(
1
1
1
2
)
(
1
2
1
3
)
(
1
3
1
4
)
⋯
⋯
(
1
n
−
1
1
n
)
(
1
n
1
n
1
)
(
1
n
1
1
n
2
)
⋯
=
∞
.
{\displaystyle {\begin{aligned}\sum _{n=0}^{\infty }{\frac {2n 3}{(n 1)(n 2)}}&{}=\sum _{n=0}^{\infty }\left({\frac {1}{n 1}} {\frac {1}{n 2}}\right)\\&{}=\left({\frac {1}{1}} {\frac {1}{2}}\right) \left({\frac {1}{2}} {\frac {1}{3}}\right) \left({\frac {1}{3}} {\frac {1}{4}}\right) \cdots \\&{}\cdots \left({\frac {1}{n-1}} {\frac {1}{n}}\right) \left({\frac {1}{n}} {\frac {1}{n 1}}\right) \left({\frac {1}{n 1}} {\frac {1}{n 2}}\right) \cdots \\&{}=\infty .\end{aligned}}}
Kontua da terminoak ez direla ezeztatzen.
Izan bedi k zenbaki oso positibo bat. Orduan,
∑
n
=
1
∞
1
n
(
n
k
)
=
H
k
k
,
{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n(n k)}}={\frac {H_{k}}{k}},}
non H k baita zenbaki harmoniko k -garrena. 1/(k–1) eta gero, termino guztiak ezeztatu egiten dira.