Máquina de Atwood
La máquina de Atwood[1][2][3] es una máquina inventada en 1784 por George Atwood como un experimento de laboratorio para verificar las leyes mecánicas del movimiento uniformemente acelerado[4]. La máquina de Atwood es una demostración común en las aulas usada para ilustrar los principios de la Física, específicamente en Mecánica.
La máquina de Atwood consiste en dos masas, , conectadas por una cuerda inelástica de masa despreciable con una polea ideal de masa despreciable.
- Cuando , la máquina está en equilibrio neutral sin importar la posición de los pesos.
- Cuando ambas masas experimentan una aceleración uniforme.
Ecuación para la aceleración uniforme
[editar]Se puede obtener una ecuación para la aceleración usando análisis de fuerzas. Puesto que se está usando una cuerda inelástica con masa despreciable y una polea ideal con masa despreciable, las únicas fuerzas que se tiene que considerar son: la fuerza tensión () y el peso de las dos masas (). Para encontrar el tenemos que considerar las fuerzas que afectan a cada masa por separado (con el siguiente convenio de signos, suponiendo que ,- hacia "abajo" -con el mismo sentido a la aceleración de la gravedad - en y la aceleración es positiva hacia "arriba" -con sentido contrario de la aceleración de la gravedad - en ):
- fuerzas que afectan a :
-
- (donde y tienen el mismo sentido, la fuerza de inercia sentido contrario a )
- fuerzas que afectan a :
-
- (donde y tienen el mismo sentido, la fuerza de inercia sentido contrario a )
Dando lugar al sistema:
donde T y a son las incógnitas, ordenando tenemos el sistema de ecuaciones lineales:
Aplicando la regla de Cramer, el valor de las incógnitas es:
El factor , con , es el número adimensional denominado número de Atwood en honor de George Atwood.
Nota: Inversamente, la aceleración debida a la gravedad () puede obtenerse cronometrando el movimiento de los pesos y calculando un valor para la aceleración uniforme (): En el diagrama de la figura, si se parte de las masas alineadas y se mide el tiempo en el que se separan las masas una distancia vertical , se cumple que . Entonces:
Ecuación para la tensión
[editar]Puede ser útil obtener una ecuación para la tensión en la cuerda. Para evaluar la tensión sustituimos la ecuación por la aceleración en cualquiera de las dos ecuaciones de fuerza.
Por ejemplo sustituyendo en , se obtiene:
La tensión puede obtenerse de una forma similar de
Ecuación para una polea no ideal
[editar]Para diferencias muy pequeñas de masa y entre y , el momento de inercia () sobre la polea de masa no despreciable de radio no puede ser despreciada. La aceleración angular de la polea viene dada por:
En este caso, el torque total del sistema se convierte en:
Implementaciones prácticas
[editar]Las ilustraciones originales de Atwood muestran el eje de la polea principal descansando sobre el borde de otras cuatro ruedas, para minimizar las fuerzas de fricción de los cojinetes. Muchas implementaciones históricas de la máquina siguen este diseño.
Un ascensor con un contrapeso se aproxima a una máquina de Atwood ideal y de ese modo alivia al motor conductor de la carga total de la cabina del ascensor —solo tiene que vencer la diferencia entre el peso y la inercia de las dos masas, contrapeso y cabina-. El mismo principio se usa para ferrocarriles funiculares con dos vagones conectados en vías inclinadas.
Referencias
[editar]- ↑ B.P.C. (Curso de Física de Berkeley) (2020). «3». Mecánica (2 edición). Reverte S.A. p. 91. ISBN 978-84-291-4282-2.
- ↑ Ibáñez Mengual, José Antonio (1989). «4.3». En Universidad de Murcia, ed. Física (1 edición). EDITUM. p. 126. ISBN 84-7684-188-4.
- ↑ Paul A. Tipler (1987). «6-4». Física preuniversitaria. I. Reverte S.A. p. 152. ISBN 84-291-4375-0.
- ↑ Elie Lévy (1992). «I». Diccionario Akal de Física. Ediciones AKAL. p. 70. ISBN 97-884-460-0144-7.
Enlaces externos
[editar]- Wikimedia Commons alberga una categoría multimedia sobre Máquina de Atwood.