Dates are inconsistent

Dates are inconsistent

1777 results sorted by ID

2024/1287 (PDF) Last updated: 2024-08-15
Basic Lattice Cryptography: The concepts behind Kyber (ML-KEM) and Dilithium (ML-DSA)
Vadim Lyubashevsky
Public-key cryptography

This tutorial focuses on describing the fundamental mathematical concepts and design decisions used in the two ``main'' lattice schemes standardized by NIST and included in the CNSA 2.0 algorithmic suite. They are the KEM / encryption scheme CRYSTALS-Kyber (ML-KEM) and the signature scheme CRYSTALS-Dilithium (ML-DSA) . In addition, we will also give the main ideas behind other lattice-based KEMs like Frodo and NTRU.

2024/1282 (PDF) Last updated: 2024-08-14
$\mathsf{NTRU}\mathsf{ }\mathsf{PKE}$: Efficient Public-Key Encryption Schemes from the NTRU Problem
Jonghyun Kim, Jong Hwan Park
Public-key cryptography

We propose a new NTRU-based Public-Key Encryption (PKE) scheme called $\mathsf{NTRU }\mathsf{PKE}$, which effectively incorporates the Fujisaki-Okamoto transformation for PKE (denoted as $\mathsf{FO}_{\mathsf{PKE}}$) to achieve chosen-ciphertext security in the Quantum Random Oracle Model (QROM). While $\mathsf{NTRUEncrypt}$, a first-round candidate in the NIST PQC standardization process, was proven to be chosen-ciphertext secure in the Random Oracle Model (ROM), it lacked corresponding...

2024/1267 (PDF) Last updated: 2024-08-09
Chrysalis Cipher Suite
Ian Malloy, Dennis Hollenbeck
Foundations

The formal verification of architectural strength in terms of computational complexity is achieved through reduction of the Non-Commutative Grothendieck problem in the form of a quadratic lattice. This multivariate form relies on equivalences derived from a k-clique problem within a multigraph. The proposed scheme reduces the k-clique problem as an input function, resulting in the generation of a quadratic used as parameters for the lattice. By Grothendieck’s inequality, the satisfiability...

2024/1256 (PDF) Last updated: 2024-08-08
Concrete Analysis of Schnorr-type Signatures with Aborts
Theo Fanuela Prabowo, Chik How Tan
Attacks and cryptanalysis

Lyubashevsky’s signature can be viewed as a lattice-based adapation of the Schnorr signature, with the core difference being the use of aborts during signature generation process. Since the proposal of Lyubashevsky’s signature, a number of other variants of Schnorr-type signatures with aborts have been proposed, both in lattice-based and code-based setting. In this paper, we examine the security of Schnorr-type signature schemes with aborts. We give a detailed analysis of when the expected...

2024/1248 (PDF) Last updated: 2024-08-06
A Not So Discrete Sampler: Power Analysis Attacks on HAWK signature scheme
Morgane Guerreau, Mélissa Rossi
Attacks and cryptanalysis

HAWK is a lattice-based signature scheme candidate to the fourth call of the NIST's Post-Quantum standardization campaign. Considered as a cousin of Falcon (one of the future NIST post-quantum standards) one can wonder whether HAWK shares the same drawbacks as Falcon in terms of side-channel attacks. Indeed, Falcon signature algorithm and particularly its Gaussian sampler, has shown to be highly vulnerable to power-analysis attacks. Besides, efficiently protecting Falcon's signature...

2024/1243 (PDF) Last updated: 2024-08-06
Tailoring two-dimensional codes for structured lattice-based KEMs and applications to Kyber
Thales B. Paiva, Marcos A. Simplicio Jr, Syed Mahbub Hafiz, Bahattin Yildiz, Eduardo L. Cominetti
Public-key cryptography

Kyber is a post-quantum lattice-based key encapsulation mechanism (KEM) selected by NIST for standardization as ML-KEM. The scheme is designed to ensure that the unintentional errors accumulated during decryption do not prevent the receiver to correctly recover the encapsulated key. This is done by using a simple error-correction code independently applied to each bit of the message, for which it is possible to show that the decryption failure rate (DFR) is negligible. Although there have...

2024/1234 (PDF) Last updated: 2024-08-06
EagleSignV3 : A new secure variant of EagleSign signature over lattices
Abiodoun Clement Hounkpevi, Sidoine Djimnaibeye, Michel Seck, Djiby Sow
Public-key cryptography

With the potential arrival of quantum computers, it is essential to build cryptosystems resistant to attackers with the computing power of a quantum computer. With Shor's algorithm, cryptosystems based on discrete logarithms and factorization become obsolete. Reason why NIST has launching two competitions in 2016 and 2023 to standardize post-quantum cryptosystems (such as KEM and signature ) based on problems supposed to resist attacks using quantum computers. EagleSign was prosed to NIT...

2024/1229 (PDF) Last updated: 2024-08-02
Benchmarking Attacks on Learning with Errors
Emily Wenger, Eshika Saxena, Mohamed Malhou, Ellie Thieu, Kristin Lauter
Attacks and cryptanalysis

Lattice cryptography schemes based on the learning with errors (LWE) hardness assumption have been standardized by NIST for use as post-quantum cryptosystems, and by HomomorphicEncryption.org for encrypted compute on sensitive data. Thus, understanding their concrete security is critical. Most work on LWE security focuses on theoretical estimates of attack performance, which is important but may overlook attack nuances arising in real-world implementations. The sole existing concrete...

2024/1217 (PDF) Last updated: 2024-07-30
A Compact and Parallel Swap-Based Shuffler based on butterfly Network and its complexity against Side Channel Analysis
Jong-Yeon Park, Wonil Lee, Bo Gyeong Kang, Il-jong Song, Jaekeun Oh, Kouichi Sakurai
Foundations

A prominent countermeasure against side channel attacks, the hiding countermeasure, typically involves shuffling operations using a permutation algorithm. Especially in the era of Post-Quantum Cryptography, the importance of the hiding coun- termeasure is emphasized due to computational characteristics like those of lattice and code-based cryptography. In this context, swiftly and securely generating permutations has a critical impact on an algorithm’s security and efficiency. The widely...

2024/1211 (PDF) Last updated: 2024-08-06
A Generic Framework for Side-Channel Attacks against LWE-based Cryptosystems
Julius Hermelink, Silvan Streit, Erik Mårtensson, Richard Petri
Attacks and cryptanalysis

Lattice-based cryptography is in the process of being standardized. Several proposals to deal with side-channel information using lattice reduction exist. However, it has been shown that algorithms based on Bayesian updating are often more favorable in practice. In this work, we define distribution hints; a type of hint that allows modelling probabilistic information. These hints generalize most previously defined hints and the information obtained in several attacks. We define two...

2024/1194 (PDF) Last updated: 2024-07-24
Hardware Implementation and Security Analysis of Local-Masked NTT for CRYSTALS-Kyber
Rafael Carrera Rodriguez, Emanuele Valea, Florent Bruguier, Pascal Benoit
Implementation

The rapid evolution of post-quantum cryptography, spurred by standardization efforts such as those led by NIST, has highlighted the prominence of lattice-based cryptography, notably exemplified by CRYSTALS-Kyber. However, concerns persist regarding the security of cryptographic implementations, particularly in the face of Side-Channel Attacks (SCA). The usage of operations like the Number Theoretic Transform (NTT) in CRYSTALS-Kyber introduces vulnerabilities to SCA, especially single-trace...

2024/1192 (PDF) Last updated: 2024-07-24
Towards ML-KEM & ML-DSA on OpenTitan
Amin Abdulrahman, Felix Oberhansl, Hoang Nguyen Hien Pham, Jade Philipoom, Peter Schwabe, Tobias Stelzer, Andreas Zankl
Implementation

This paper presents extensions to the OpenTitan hardware root of trust that aim at enabling high-performance lattice-based cryptography. We start by carefully optimizing ML-KEM and ML-DSA - the two primary algorithms selected by NIST for standardization - in software targeting the OTBN accelerator. Based on profiling results of these implementations, we propose tightly integrated extensions to OTBN, specifically an interface from OTBN to OpenTitan's Keccak accelerator (KMAC core) and...

2024/1179 (PDF) Last updated: 2024-07-22
Inner Product Ring LWE Problem, Reduction, New Trapdoor Algorithm for Inner Product Ring LWE Problem and Ring SIS Problem
Zhuang Shan, Leyou Zhang, Qing Wu, Qiqi Lai
Foundations

Lattice cryptography is currently a major research focus in public-key encryption, renowned for its ability to resist quantum attacks. The introduction of ideal lattices (ring lattices) has elevated the theoretical framework of lattice cryptography. Ideal lattice cryptography, compared to classical lattice cryptography, achieves more acceptable operational efficiency through fast Fourier transforms. However, to date, issues of impracticality or insecurity persist in ideal lattice problems....

2024/1177 (PDF) Last updated: 2024-07-21
Cryptanalysis of two post-quantum authenticated key agreement protocols
Mehdi Abri, Hamid Mala
Attacks and cryptanalysis

As the use of the internet and digital devices has grown rapidly, keeping digital communications secure has become very important. Authenticated Key Agreement (AKA) protocols play a vital role in securing digital communications. These protocols enable the communicating parties to mutually authenticate and securely establish a shared secret key. The emergence of quantum computers makes many existing AKA protocols vulnerable to their immense computational power. Consequently, designing new...

2024/1174 (PDF) Last updated: 2024-07-20
Grafted Trees Bear Better Fruit: An Improved Multiple-Valued Plaintext-Checking Side-Channel Attack against Kyber
Jinnuo Li, Chi Cheng, Muyan Shen, Peng Chen, Qian Guo, Dongsheng Liu, Liji Wu, Jian Weng
Attacks and cryptanalysis

As a prominent category of side-channel attacks (SCAs), plaintext-checking (PC) oracle-based SCAs offer the advantages of generality and operational simplicity on a targeted device. At TCHES 2023, Rajendran et al. and Tanaka et al. independently proposed the multiple-valued (MV) PC oracle, significantly reducing the required number of queries (a.k.a., traces) in the PC oracle. However, in practice, when dealing with environmental noise or inaccuracies in the waveform classifier, they...

2024/1173 (PDF) Last updated: 2024-07-20
Cryptanalysis of Rank-2 Module-LIP with Symplectic Automorphisms
Hengyi Luo, Kaijie Jiang, Yanbin Pan, Anyu Wang
Attacks and cryptanalysis

At Eurocrypt'24, Mureau et al. formally defined the Lattice Isomorphism Problem for module lattices (module-LIP) in a number field $\mathbb{K}$, and proposed a heuristic randomized algorithm solving module-LIP for modules of rank 2 in $\mathbb{K}^2$ with a totally real number field $\mathbb{K}$, which runs in classical polynomial time for a large class of modules and a large class of totally real number field under some reasonable number theoretic assumptions. In this paper, by introducing a...

2024/1170 (PDF) Last updated: 2024-07-29
Rudraksh: A compact and lightweight post-quantum key-encapsulation mechanism
Suparna Kundu, Archisman Ghosh, Angshuman Karmakar, Shreyas Sen, Ingrid Verbauwhede
Public-key cryptography

Resource-constrained devices such as wireless sensors and Internet of Things (IoT) devices have become ubiquitous in our digital ecosystem. These devices generate and handle a major part of our digital data. In the face of the impending threat of quantum computers on our public-key infrastructure, it is impossible to imagine the security and privacy of our digital world without integrating post-quantum cryptography (PQC) into these devices. Usually, due to the resource constraints of these...

2024/1165 (PDF) Last updated: 2024-07-18
Respire: High-Rate PIR for Databases with Small Records
Alexander Burton, Samir Jordan Menon, David J. Wu
Cryptographic protocols

Private information retrieval (PIR) is a key building block in many privacy-preserving systems, and recent works have made significant progress on reducing the concrete computational costs of single-server PIR. However, existing constructions have high communication overhead, especially for databases with small records. In this work, we introduce Respire, a lattice-based PIR scheme tailored for databases of small records. To retrieve a single record from a database with over a million...

2024/1159 (PDF) Last updated: 2024-07-17
LaPSuS – A Lattice-Based Private Stream Aggregation Scheme under Scrutiny
Johannes Ottenhues, Alexander Koch
Attacks and cryptanalysis

Private Stream Aggregation (PSA) allows clients to send encryptions of their private values to an aggregator that is then able to learn the sum of these values but nothing else. It has since found many applications in practice, e.g. for smart metering or federated learning. In 2018, Becker et al. proposed the first lattice-based PSA scheme LaPS (NDSS 2018), with putative post-quantum security, which has subsequently been patented. In this paper, we describe two attacks on LaPS that break the...

2024/1149 (PDF) Last updated: 2024-07-15
Improved High-Order Masked Generation of Masking Vector and Rejection Sampling in Dilithium
Jean-Sébastien Coron, François Gérard, Tancrède Lepoint, Matthias Trannoy, Rina Zeitoun
Implementation

In this work, we introduce enhanced high-order masking techniques tailored for Dilithium, the post-quantum signature scheme recently standardized by NIST. We improve the masked generation of the masking vector $\vec{y}$, based on a fast Boolean-to-arithmetic conversion modulo $q$. We also describe an optimized gadget for the high-order masked rejection sampling, with a complexity independent from the size of the modulus $q$. We prove the security of our gadgets in the classical ISW...

2024/1148 (PDF) Last updated: 2024-07-15
On hermitian decomposition lattices and the module-LIP problem in rank 2
Thomas Espitau, Heorhii Pliatsok
Attacks and cryptanalysis

In this short note, we introduce a specific class of rank two lattices over CM fields endowed with additional symmetries, which are involved in the decomposition of algebraic integers in Hermitian squares. As an application, we show an elementary reduction from the module-LIP problem in rank 2 over a CM or totally real number field to the finding of a square basis in such lattices.

2024/1142 Last updated: 2024-07-15
Predicting one class of truncated matrix congruential generators with unknown parameters
Changcun Wang, Zhaopeng Dai
Attacks and cryptanalysis

Matrix congruential generators is an important class of pseudorandom number generators. In this paper we show how to predict a class of Matrix congruential generators matrix congruential generators with unknown parameters. Given a few truncated digits of high-order bits output by a matrix congruential generator, we give a method based on lattice reduction to recover the parameters and the initial state of the generator.

2024/1137 (PDF) Last updated: 2024-07-12
Cryptanalysis of EagleSign
Ludo N. Pulles, Mehdi Tibouchi
Attacks and cryptanalysis

EagleSign is one of the 40 “Round 1 Additional Signatures” that is accepted for consideration in the supplementary round of the Post-Quantum Cryptography standardization process, organized by NIST. Its design is based on structured lattices, and it boasts greater simplicity and performance compared to the two lattice signatures already selected for standardization: Falcon and Dilithium. In this paper, we show that those claimed advantages come at the cost of security. More precisely, we...

2024/1125 (PDF) Last updated: 2024-07-10
Revisiting PACD-based Attacks on RSA-CRT
Guillaume Barbu, Laurent Grémy, Roch Lescuyer
Attacks and cryptanalysis

In this work, we use some recent developments in lattice-based cryptanalytic tools to revisit a fault attack on RSA-CRT signatures based on the Partial Approximate Common Divisor (PACD) problem. By reducing the PACD to a Hidden Number Problem (HNP) instance, we decrease the number of required faulted bits from 32 to 7 in the case of a 1024-bit RSA. We successfully apply the attack to RSA instances up to 8192-bit and present an enhanced analysis of the error-tolerance in the Bounded Distance...

2024/1113 (PDF) Last updated: 2024-07-09
Ringtail: Practical Two-Round Threshold Signatures from Learning with Errors
Cecilia Boschini, Darya Kaviani, Russell W. F. Lai, Giulio Malavolta, Akira Takahashi, Mehdi Tibouchi
Cryptographic protocols

A threshold signature scheme splits the signing key among $\ell$ parties, such that any $t$-subset of parties can jointly generate signatures on a given message. Designing concretely efficient post-quantum threshold signatures is a pressing question, as evidenced by NIST's recent call. In this work, we propose, implement, and evaluate a lattice-based threshold signature scheme, Ringtail, which is the first to achieve a combination of desirable properties: (i) The signing...

2024/1094 (PDF) Last updated: 2024-07-04
Notes on Multiplying Cyclotomic Polynomials on a GPU
Joseph Johnston

Lattice cryptography has many exciting applications, from homomorphic encryption to zero knowledge proofs. We explore the algebra of cyclotomic polynomials underlying many practical lattice cryptography constructions, and we explore algorithms for multiplying cyclotomic polynomials on a GPU.

2024/1067 (PDF) Last updated: 2024-07-01
Efficient Lattice-Based Threshold Signatures with Functional Interchangeability
Guofeng Tang, Bo Pang, Long Chen, Zhenfeng Zhang
Public-key cryptography

A threshold signature scheme distributes the ability to generate signatures through distributed key generation and signing protocols. A threshold signature scheme should be functionally interchangeable, meaning that a signature produced by a threshold scheme should be verifiable by the same algorithm used for non-threshold signatures. To resist future attacks from quantum adversaries, lattice-based threshold signatures are desirable. However, the performance of existing lattice-based...

2024/1041 (PDF) Last updated: 2024-07-02
Embedding Integer Lattices as Ideals into Polynomial Rings
Yihang Cheng, Yansong Feng, Yanbin Pan
Attacks and cryptanalysis

Many lattice-based crypstosystems employ ideal lattices for high efficiency. However, the additional algebraic structure of ideal lattices usually makes us worry about the security, and it is widely believed that the algebraic structure will help us solve the hard problems in ideal lattices more efficiently. In this paper, we study the additional algebraic structure of ideal lattices further and find that a given ideal lattice in a polynomial ring can be embedded as an ideal into infinitely...

2024/1039 (PDF) Last updated: 2024-06-26
Reduction from Average-Case M-ISIS to Worst-Case CVP Over Perfect Lattices
Samuel Lavery
Foundations

This paper presents a novel reduction from the average-case hardness of the Module Inhomogeneous Short Integer Solution (M-ISIS) problem to the worst-case hardness of the Closest Vector Problem (CVP) by defining and leveraging “perfect” lattices for cryptographic purposes. Perfect lattices, previously only theoretical constructs, are characterized by their highly regular structure, optimal density, and a central void, which we term the “Origin Cell.” The simplest Origin Cell is a...

2024/1033 (PDF) Last updated: 2024-06-26
Adaptively Secure 5 Round Threshold Signatures from MLWE/MSIS and DL with Rewinding
Shuichi Katsumata, Michael Reichle, Kaoru Takemure
Cryptographic protocols

T-out-of-N threshold signatures have recently seen a renewed interest, with various types now available, each offering different tradeoffs. However, one property that has remained elusive is adaptive security. When we target thresholdizing existing efficient signatures schemes based on the Fiat-Shamir paradigm such as Schnorr, the elusive nature becomes clear. This class of signature schemes typically rely on the forking lemma to prove unforgeability. That is, an adversary is rewound and...

2024/1023 (PDF) Last updated: 2024-06-25
Constant-Size Unbounded Multi-Hop Fully Homomorphic Proxy Re-Encryption from Lattices
Feixiang Zhao, Huaxiong Wang, Jian Weng
Public-key cryptography

Proxy re-encryption is a cryptosystem that achieves efficient encrypted data sharing by allowing a proxy to transform a ciphertext encrypted under one key into another ciphertext under a different key. Homomorphic proxy re-encryption (HPRE) extends this concept by integrating homomorphic encryption, allowing not only the sharing of encrypted data but also the homomorphic computations on such data. The existing HPRE schemes, however, are limited to a single or bounded number of hops of...

2024/1001 (PDF) Last updated: 2024-06-20
Guidance for Efficient Selection of Secure Parameters for Fully Homomorphic Encryption
Elena Kirshanova, Chiara Marcolla, Sergi Rovira
Public-key cryptography

The field of Fully Homomorphic Encryption (FHE) has seen many theoretical and computational advances in recent years, bringing the technology closer to practicality than ever before. For this reason, practitioners from neighbouring fields such as machine learning have sought to understand FHE to provide privacy to their work. Unfortunately, selecting secure and efficient parameters in FHE is a daunting task due to the many interdependencies between the parameters involved. In this work, we...

2024/991 (PDF) Last updated: 2024-06-19
Leveled Homomorphic Encryption Schemes for Homomorphic Encryption Standard
Shuhong Gao, Kyle Yates
Foundations

Homomorphic encryption allows for computations on encrypted data without exposing the underlying plaintext, enabling secure and private data processing in various applications such as cloud computing and machine learning. This paper presents a comprehensive mathematical foundation for three prominent homomorphic encryption schemes: Brakerski-Gentry-Vaikuntanathan (BGV), Brakerski-Fan-Vercauteren (BFV), and Cheon-Kim-Kim-Song (CKKS), all based on the Ring Learning with Errors (RLWE) problem....

2024/965 (PDF) Last updated: 2024-06-15
Efficient and Secure Post-Quantum Certificateless Signcryption for Internet of Medical Things
Shiyuan Xu, Xue Chen, Yu Guo, Siu-Ming Yiu, Shang Gao, Bin Xiao
Public-key cryptography

Internet of Medical Things (IoMT) has gained significant research focus in both academic and medical institutions. Nevertheless, the sensitive data involved in IoMT raises concerns regarding user validation and data privacy. To address these concerns, certificateless signcryption (CLSC) has emerged as a promising solution, offering authenticity, confidentiality, and unforgeability. Unfortunately, most existing CLSC schemes are impractical for IoMT due to their heavy computational and storage...

2024/960 (PDF) Last updated: 2024-06-14
Designs for practical SHE schemes based on Ring-LWR
Madalina Bolboceanu, Anamaria Costache, Erin Hales, Rachel Player, Miruna Rosca, Radu Titiu
Public-key cryptography

The Learning with Errors problem (LWE) and its variants are among the most popular assumptions underlying lattice-based cryptography. The Learning with Rounding problem (LWR) can be thought of as a deterministic variant of LWE. While lattice-based cryptography is known to enable many advanced constructions, constructing Fully Homomorphic Encryption schemes based on LWR remains an under-explored part of the literature. In this work, we present a thorough study of Somewhat Homomorphic...

2024/959 (PDF) Last updated: 2024-06-14
Flood and Submerse: Distributed Key Generation and Robust Threshold Signature from Lattices
Thomas Espitau, Guilhem Niot, Thomas Prest
Public-key cryptography

We propose a new framework based on random submersions — that is projection over a random subspace blinded by a small Gaussian noise — for constructing verifiable short secret sharing and showcase it to construct efficient threshold lattice-based signatures in the hash-and-sign paradigm, when based on noise flooding. This is, to our knowledge, the first hash-and-sign lattice-based threshold signature. Our threshold signature enjoys the very desirable property of robustness, including at key...

2024/945 (PDF) Last updated: 2024-06-12
Quantum-Safe Public Key Blinding from MPC-in-the-Head Signature Schemes
Sathvika Balumuri, Edward Eaton, Philippe Lamontagne
Public-key cryptography

Key blinding produces pseudonymous digital identities by rerandomizing public keys of a digital signature scheme. It is used in anonymous networks to provide the seemingly contradictory goals of anonymity and authentication. Current key blinding schemes are based on the discrete log assumption. Eaton, Stebila and Stracovsky (LATINCRYPT 2021) proposed the first key blinding schemes from lattice assumptions. However, the large public keys and lack of QROM security means they are not ready to...

2024/931 (PDF) Last updated: 2024-06-10
Leveled Fully-Homomorphic Signatures from Batch Arguments
Abtin Afshar, Jiaqi Cheng, Rishab Goyal
Public-key cryptography

Fully homomorphic signatures are a significant strengthening of digital signatures, enabling computations on \emph{secretly} signed data. Today, we have multiple approaches to design fully homomorphic signatures such as from lattices, or succinct functional commitments, or indistinguishability obfuscation, or mutable batch arguments. Unfortunately, all existing constructions for homomorphic signatures suffer from one or more limitations. We do not have homomorphic signatures with features...

2024/927 (PDF) Last updated: 2024-06-12
MATHEMATICAL SPECULATIONS ON CRYPTOGRAPHY
Anjali C B
Foundations

The current cryptographic frameworks like RSA, ECC, and AES are potentially under quantum threat. Quantum cryptographic and post-quantum cryptography are being extensively researched for securing future information. The quantum computer and quantum algorithms are still in the early developmental stage and thus lack scalability for practical application. As a result of these challenges, most researched PQC methods are lattice-based, code-based, ECC isogeny, hash-based, and multivariate...

2024/895 (PDF) Last updated: 2024-06-05
Fully-Succinct Multi-Key Homomorphic Signatures from Standard Assumptions
Gaspard Anthoine, David Balbás, Dario Fiore
Foundations

Multi-Key Homomorphic Signatures (MKHS) allow one to evaluate a function on data signed by distinct users while producing a succinct and publicly-verifiable certificate of the correctness of the result. All the constructions of MKHS in the state of the art achieve a weak level of succinctness where signatures are succinct in the total number of inputs but grow linearly with the number of users involved in the computation. The only exception is a SNARK-based construction which relies on a...

2024/890 (PDF) Last updated: 2024-07-09
Ring Signatures for Deniable AKEM: Gandalf's Fellowship
Phillip Gajland, Jonas Janneck, Eike Kiltz
Public-key cryptography

Ring signatures, a cryptographic primitive introduced by Rivest, Shamir and Tauman (ASIACRYPT 2001), offer signer anonymity within dynamically formed user groups. Recent advancements have focused on lattice-based constructions to improve efficiency, particularly for large signing rings. However, current state-of-the-art solutions suffer from significant overhead, especially for smaller rings. In this work, we present a novel NTRU-based ring signature scheme, Gandalf, tailored towards...

2024/882 (PDF) Last updated: 2024-06-03
Lattice-based Fault Attacks against ECMQV
Weiqiong Cao, Hua Chen, Jingyi Feng, Linmin Fan, Wenling Wu
Attacks and cryptanalysis

ECMQV is a standardized key agreement protocol based on ECC with an additional implicit signature authentication. In this paper we investigate the vulnerability of ECMQV against fault attacks and propose two efficient lattice-based fault attacks. In our attacks, by inducing a storage fault to the ECC parameter $a$ before the execution of ECMQV, we can construct two kinds of weak curves and successfully pass the public-key validation step in the protocol. Then, by solving ECDLP and using a...

2024/864 (PDF) Last updated: 2024-05-31
Collaborative, Segregated NIZK (CoSNIZK) and More Efficient Lattice-Based Direct Anonymous Attestation
Liqun Chen, Patrick Hough, Nada El Kassem
Cryptographic protocols

Direct Anonymous Attestation (DAA) allows a (host) device with a Trusted Platform Module (TPM) to prove that it has a certified configuration of hardware and software whilst preserving the privacy of the device. All deployed DAA schemes are based on classical security assumptions. Despite a long line of works proposing post-quantum designs, the vast majority give only theoretical schemes and where concrete parameters are computed, their efficiency is far from practical. Our first...

2024/856 (PDF) Last updated: 2024-05-31
Indistinguishability Obfuscation from Bilinear Maps and LPN Variants
Seyoon Ragavan, Neekon Vafa, Vinod Vaikuntanathan
Foundations

We construct an indistinguishability obfuscation (IO) scheme from the sub-exponential hardness of the decisional linear problem on bilinear groups together with two variants of the learning parity with noise (LPN) problem, namely large-field LPN and (binary-field) sparse LPN. This removes the need to assume the existence pseudorandom generators (PRGs) in $\mathsf{NC}^0$ with polynomial stretch from the state-of-the-art construction of IO (Jain, Lin, and Sahai, EUROCRYPT 2022). As an...

2024/844 (PDF) Last updated: 2024-05-29
Finding Dense Submodules with Algebraic Lattice Reduction
Alexander Karenin, Elena Kirshanova
Attacks and cryptanalysis

We prove an algebraic analogue of Pataki-Tural lemma (Pataki-Tural, arXiv:0804.4014, 2008) -- the main tool in analysing the so-called overstretched regime of NTRU. Our result generalizes this lemma from Euclidean lattices to modules over any number field enabling us to look at NTRU as rank-2 module over cyclotomic number fields with a rank-1 dense submodule generated by the NTRU secret key. For Euclidean lattices, this overstretched regime occurs for large moduli $q$ and...

2024/824 (PDF) Last updated: 2024-05-27
Improved Meet-LWE Attack via Ternary Trees
Eunmin Lee, Joohee Lee, Yuntao Wang
Public-key cryptography

The Learning with Errors (LWE) problem with its variants over structured lattices has been widely exploited in efficient post-quantum cryptosystems. Recently, May suggests the Meet-LWE attack, which poses a significant advancement in the line of work on the Meet-in-the-Middle approach to analyze LWE with ternary secrets. In this work, we generalize and extend the idea of Meet-LWE by introducing ternary trees, which result in diverse representations of the secrets. More precisely, we...

2024/821 (PDF) Last updated: 2024-05-26
A General Framework for Lattice-Based ABE Using Evasive Inner-Product Functional Encryption
Yao-Ching Hsieh, Huijia Lin, Ji Luo
Public-key cryptography

We present a general framework for constructing attribute-based encryption (ABE) schemes for arbitrary function class based on lattices from two ingredients, i) a noisy linear secret sharing scheme for the class and ii) a new type of inner-product functional encryption (IPFE) scheme, termed *evasive* IPFE, which we introduce in this work. We propose lattice-based evasive IPFE schemes and establish their security under simple conditions based on variants of evasive learning with errors (LWE)...

2024/810 (PDF) Last updated: 2024-05-24
The Perils of Limited Key Reuse: Adaptive and Parallel Mismatch Attacks with Post-processing Against Kyber
Qian Guo, Erik Mårtensson, Adrian Åström
Attacks and cryptanalysis

In this paper, we study the robustness of Kyber, the Learning With Errors (LWE)-based Key Encapsulation Mechanism (KEM) chosen for standardization by NIST, against key mismatch attacks. We demonstrate that Kyber's security levels can be compromised with a few mismatch queries by striking a balance between the parallelization level and the cost of lattice reduction for post-processing. This highlights the imperative need to strictly prohibit key reuse in CPA-secure Kyber. We further...

2024/805 (PDF) Last updated: 2024-05-24
DiTRU: A Resurrection of NTRU over Dihedral Group
Ali Raya, Vikas Kumar, Sugata Gangopadhyay
Public-key cryptography

NTRU-like cryptosystems are among the most studied lattice-based post-quantum candidates. While most NTRU proposals have been introduced over a commutative ring of quotient polynomials, other rings can be used. Noncommutative algebra has been endorsed as a direction to build new variants of NTRU a long time ago. The first attempt to construct a noncommutative variant was due to Hoffstein and Silverman motivated by more resistance to lattice attack. The scheme has been built over the group...

2024/788 (PDF) Last updated: 2024-05-22
A Fault-Resistant NTT by Polynomial Evaluation and Interpolation
Sven Bauer, Fabrizio De Santis, Kristjane Koleci, Anita Aghaie

In computer arithmetic operations, the Number Theoretic Transform (NTT) plays a significant role in the efficient implementation of cyclic and nega-cyclic convolutions with the application of multiplying large integers and large degree polynomials. Multiplying polynomials is a common operation in lattice-based cryptography. Hence, the NTT is a core component of several lattice-based cryptographic algorithms. Two well-known examples are the key encapsulation mechanism Kyber and the...

2024/787 (PDF) Last updated: 2024-05-22
A new attack against search-LWE using Diophantine approximations
Robin Frot, Daniel Zentai
Attacks and cryptanalysis

In this paper, we present a new attack against search-LWE instances with a small secret key. The method consists of lifting the public key to $\mathbb Z$ and finding a good Diophantine approximation of the public key divided by the modulus $a$. This is done using lattice reduction algorithms. The lattice considered, and the approximation quality needed is similar to known decision-LWE attacks for small keys. However, we do not require an in-depth analysis of the reduction algorithm (any...

2024/782 (PDF) Last updated: 2024-05-28
Relating Code Equivalence to Other Isomorphism Problems
Huck Bennett, Kaung Myat Htay Win
Foundations

We study the complexity of the Code Equivalence Problem on linear error-correcting codes by relating its variants to isomorphism problems on other discrete structures---graphs, lattices, and matroids. Our main results are a fine-grained reduction from the Graph Isomorphism Problem to the Linear Code Equivalence Problem over any field $\mathbb{F}$, and a reduction from the Linear Code Equivalence Problem over any field $\mathbb{F}_p$ of prime, polynomially bounded order $p$ to the Lattice...

2024/763 (PDF) Last updated: 2024-05-19
On SIS-problem-based random Feistel ciphers and its statistical evaluation of resistance against differential cryptanalysis
Yu Morishima, Masahiro Kaminaga
Secret-key cryptography

Provable security based on a robust mathematical framework is the gold standard for security evaluation in cryptography. Several provable secure cryptosystems have been studied for public key cryptography. However, provably secure symmetric-key cryptography has received little attention. Although there are known provably secure symmetric-key cryptosystems based on the hardness of factorization and discrete logarithm problems, they are not only slower than conventional block ciphers but can...

2024/761 (PDF) Last updated: 2024-05-18
Lattice-based Broadcast Authenticated Searchable Encryption for Cloud Storage
Yibo Cao, Shiyuan Xu, Xiu-Bo Chen, Gang Xu, Siu-Ming Yiu
Public-key cryptography

The extensive use of cloud storage has created an urgent need to search and share data. Public key authenticated encryption with keyword search (PAEKS) allows for the retrieval from encrypted data, while resisting the insider keyword guessing attacks (IKGAs). Most PAEKS schemes only work with single-receiver model, exhibiting very limited applicability. To address this concern, there have been researches on broadcast authenticated encryption with keyword search (BAEKS) to achieve...

2024/747 (PDF) Last updated: 2024-05-27
Scaling Lattice Sieves across Multiple Machines
Martin R. Albrecht, Joe Rowell
Implementation

Lattice sieves are algorithms for finding short vectors in lattices. We present an implementation of two such sieves – known as “BGJ1” and “BDGL” in the literature – that scales across multiple servers (with varying success). This class of algorithms requires exponential memory which had put into question their ability to scale across sieving nodes. We discuss our architecture and optimisations and report experimental evidence of the efficiency of our approach.

2024/739 (PDF) Last updated: 2024-05-15
BGJ15 Revisited: Sieving with Streamed Memory Access
Ziyu Zhao, Jintai Ding, Bo-Yin Yang
Implementation

The focus of this paper is to tackle the issue of memory access within sieving algorithms for lattice problems. We have conducted an in-depth analysis of an optimized BGJ sieve (Becker-Gama-Joux 2015), and our findings suggest that its inherent structure is significantly more memory-efficient compared to the asymptotically fastest BDGL sieve (Becker-Ducas-Gama-Laarhoven 2016). Specifically, it necessitates merely $2^{0.2075n o(n)}$ streamed (non-random) main memory accesses for the...

2024/732 (PDF) Last updated: 2024-06-11
Compact Encryption based on Module-NTRU problems
Shi Bai, Hansraj Jangir, Hao Lin, Tran Ngo, Weiqiang Wen, Jinwei Zheng
Public-key cryptography

The Module-NTRU problem, introduced by Cheon, Kim, Kim, Son (IACR ePrint 2019/1468), and Chuengsatiansup, Prest, Stehlé, Wallet, Xagawa (ASIACCS ’20), generalizes the versatile NTRU assump- tion. One of its main advantages lies in its ability to offer greater flexibil- ity on parameters, such as the underlying ring dimension. In this work, we present several lattice-based encryption schemes, which are IND-CPA (or OW-CPA) secure in the standard model based on the Module-NTRU and...

2024/714 (PDF) Last updated: 2024-05-27
Learning with Quantization: Construction, Hardness, and Applications
Shanxiang Lyu, Ling Liu, Cong Ling
Foundations

This paper presents a generalization of the Learning With Rounding (LWR) problem, initially introduced by Banerjee, Peikert, and Rosen, by applying the perspective of vector quantization. In LWR, noise is induced by scalar quantization. By considering a new variant termed Learning With Quantization (LWQ), we explore large-dimensional fast-decodable lattices with superior quantization properties, aiming to enhance the compression performance over scalar quantization. We identify polar...

2024/713 (PDF) Last updated: 2024-06-11
Analyzing Pump and jump BKZ algorithm using dynamical systems
Leizhang Wang
Attacks and cryptanalysis

The analysis of the reduction effort of the lattice reduction algorithm is important in estimating the hardness of lattice-based cryptography schemes. Recently many lattice challenge records have been cracked by using the Pnj-BKZ algorithm which is the default lattice reduction algorithm used in G6K, such as the TU Darmstadt LWE and SVP Challenges. However, the previous estimations of the Pnj-BKZ algorithm are simulator algorithms rather than theoretical upper bound analyses. In this work,...

2024/712 (PDF) Last updated: 2024-05-15
Quantum NV Sieve on Grover for Solving Shortest Vector Problem
Hyunji Kim, Kyungbae Jang, Hyunjun Kim, Anubhab Baksi, Sumanta Chakraborty, Hwajeong Seo
Attacks and cryptanalysis

Quantum computers can efficiently model and solve several challenging problems for classical computers, raising concerns about potential security reductions in cryptography. NIST is already considering potential quantum attacks in the development of post-quantum cryptography by estimating the quantum resources required for such quantum attacks. In this paper, we present quantum circuits for the NV sieve algorithm to solve the Shortest Vector Problem (SVP), which serves as the security...

2024/709 (PDF) Last updated: 2024-05-08
Masked Computation the Floor Function and its Application to the FALCON Signature
Justine Paillet, Pierre-Augustin Berthet, Cédric Tavernier
Public-key cryptography

FALCON is candidate for standardization of the new Post Quantum Cryptography (PQC) primitives by the National Institute of Standards and Technology (NIST). However, it remains a challenge to define efficient countermeasures against side-channel attacks (SCA) for this algorithm. FALCON is a lattice-based signature that relies on rational numbers which is unusual in the cryptography field. While recent work proposed a solution to mask the addition and the multiplication, some roadblocks...

2024/686 (PDF) Last updated: 2024-05-04
Unstructured Inversions of New Hope
Ian Malloy
Attacks and cryptanalysis

Introduced as a new protocol implemented in “Chrome Canary” for the Google Inc. Chrome browser, “New Hope” is engineered as a post-quantum key exchange for the TLS 1.2 protocol. The structure of the exchange is revised lattice-based cryptography. New Hope incorporates the key-encapsulation mechanism of Peikert which itself is a modified Ring-LWE scheme. The search space used to introduce the closest-vector problem is generated by an intersection of a tesseract and hexadecachoron, or the...

2024/681 (PDF) Last updated: 2024-07-10
HRA-Secure Homomorphic Lattice-Based Proxy Re-Encryption with Tight Security
Aloni Cohen, David Bruce Cousins, Nicholas Genise, Erik Kline, Yuriy Polyakov, Saraswathy RV
Cryptographic protocols

We construct an efficient proxy re-encryption (PRE) scheme secure against honest re-encryption attacks (HRA-secure) with precise concrete security estimates. To get these precise concrete security estimates, we introduce the tight, fine-grained noise-flooding techniques of Li et al. (CRYPTO'22) to RLWE-based (homomorphic) PRE schemes, as well as a mixed statistical-computational security to HRA security analysis. Our solution also supports homomorphic operations on the ciphertexts. Such...

2024/665 (PDF) Last updated: 2024-07-25
Homomorphic Evaluation of LWR-based PRFs and Application to Transciphering
Amit Deo, Marc Joye, Benoit Libert, Benjamin R. Curtis, Mayeul de Bellabre
Applications

Certain applications such as FHE transciphering require randomness while operating over encrypted data. This randomness has to be obliviously generated in the encrypted domain and remain encrypted throughout the computation. Moreover, it should be guaranteed that independent-looking random coins can be obliviously generated for different computations. In this work, we consider the homomorphic evaluation of pseudorandom functions (PRFs) with a focus on practical lattice-based candidates....

2024/655 (PDF) Last updated: 2024-04-29
Implementation and Performance Analysis of Homomorphic Signature Schemes
Davide Carnemolla, Dario Catalano, Mario Di Raimondo, Federico Savasta
Implementation

Homomorphic signatures allow to validate computation on signed data. Alice, holding a dataset, $\{m_1 , \ldots , m_t \}$ uses her secret key $\sf sk$ to sign these data and stores the authenticated dataset on a remote server. The server can later (publicly) compute $m = f(m_1,...,m_t)$ together with a signature $\sigma$ certifying that $m$ is indeed the correct output of the computation $f$. Over the last fifteen years, the problem of realizing homomorphic signatures has been the focus of...

2024/652 Last updated: 2024-05-08
Compact and Secure Zero-Knowledge Proofs for Quantum-Resistant Cryptography from Modular Lattice Innovations
Samuel Lavery
Public-key cryptography

This paper presents a comprehensive security analysis of the Adh zero-knowledge proof system, a novel lattice-based, quantum-resistant proof of possession system. The Adh system offers compact key and proof sizes, making it suitable for real-world digital signature and public key agreement protocols. We explore its security by reducing it to the hardness of the Module-ISIS problem and introduce three new variants: Module-ISIS , Module-ISIS*, and Module-ISIS**. These constructions enhance...

2024/651 (PDF) Last updated: 2024-04-28
A New Hash-based Enhanced Privacy ID Signature Scheme
Liqun Chen, Changyu Dong, Nada El Kassem, Christopher J.P. Newton, Yalan Wang
Cryptographic protocols

The elliptic curve-based Enhanced Privacy ID (EPID) signature scheme is broadly used for hardware enclave attestation by many platforms that implement Intel Software Guard Extensions (SGX) and other devices. This scheme has also been included in the Trusted Platform Module (TPM) specifications and ISO/IEC standards. However, it is insecure against quantum attackers. While research into quantum-resistant EPID has resulted in several lattice-based schemes, Boneh et al. have initiated the study...

2024/650 (PDF) Last updated: 2024-04-28
Hash-based Direct Anonymous Attestation
Liqun Chen, Changyu Dong, Nada El Kassem, Christopher J.P. Newton, Yalan Wang
Cryptographic protocols

Direct Anonymous Attestation (DAA) was designed for the Trusted Platform Module (TPM) and versions using RSA and elliptic curve cryptography have been included in the TPM specifications and in ISO/IEC standards. These standardised DAA schemes have their security based on the factoring or discrete logarithm problems and are therefore insecure against quantum attackers. Research into quantum-resistant DAA has resulted in several lattice-based schemes. Now in this paper, we propose the first...

2024/629 (PDF) Last updated: 2024-04-24
Unconditional correctness of recent quantum algorithms for factoring and computing discrete logarithms
Cédric Pilatte
Foundations

In 1994, Shor introduced his famous quantum algorithm to factor integers and compute discrete logarithms in polynomial time. In 2023, Regev proposed a multi-dimensional version of Shor's algorithm that requires far fewer quantum gates. His algorithm relies on a number-theoretic conjecture on the elements in $(\mathbb{Z}/N\mathbb{Z})^{\times}$ that can be written as short products of very small prime numbers. We prove a version of this conjecture using tools from analytic number theory such...

2024/617 (PDF) Last updated: 2024-04-22
Lattice-Based Succinct Mercurial Functional Commitment for Circuits: Definitions and Constructions
Hongxiao Wang, Siu-Ming Yiu, Yanmin Zhao, Zoe L. Jiang, Min Xie
Foundations

Vector commitments gain a lot of attention because of their wide usage in applications such as blockchain and accumulator. Mercurial vector commitments and mercurial functional commitments (MFC), as significant variants of VC, are the central techniques to construct more advanced cryptographic primitives such as zero-knowledge set and zero-knowledge functional elementary database (ZK-FEDB). However, the current MFC only supports linear functions, limiting its application, i.e. building the...

2024/614 (PDF) Last updated: 2024-06-21
Non-interactive Blind Signatures: Post-quantum and Stronger Security
Foteini Baldimtsi, Jiaqi Cheng, Rishab Goyal, Aayush Yadav
Public-key cryptography

Blind signatures enable a receiver to obtain signatures on messages of its choice without revealing any message to the signer. Round-optimal blind signatures are designed as a two-round interactive protocol between a signer and receiver. Coincidentally, the choice of message is not important in many applications, and is routinely set as a random (unstructured) message by a receiver. With the goal of designing more efficient blind signatures for such applications, Hanzlik (Eurocrypt '23)...

2024/603 (PDF) Last updated: 2024-06-26
Worst-Case to Average-Case Hardness of LWE: An Alternative Perspective
Divesh Aggarwal, Leong Jin Ming, Alexandra Veliche
Foundations

In this work, we study the worst-case to average-case hardness of the Learning with Errors problem (LWE) under an alternative measure of hardness $−$ the maximum success probability achievable by a probabilistic polynomial-time (PPT) algorithm. Previous works by Regev (STOC 2005), Peikert (STOC 2009), and Brakerski, Peikert, Langlois, Regev, Stehle (STOC 2013) give worst-case to average-case reductions from lattice problems, specifically the approximate decision variant of the Shortest...

2024/601 (PDF) Last updated: 2024-04-18
Improved Provable Reduction of NTRU and Hypercubic Lattices
Henry Bambury, Phong Q. Nguyen
Attacks and cryptanalysis

Lattice-based cryptography typically uses lattices with special properties to improve efficiency. We show how blockwise reduction can exploit lattices with special geometric properties, effectively reducing the required blocksize to solve the shortest vector problem to half of the lattice's rank, and in the case of the hypercubic lattice $\mathbb{Z}^n$, further relaxing the approximation factor of blocks to $\sqrt{2}$. We study both provable algorithms and the heuristic well-known primal...

2024/592 (PDF) Last updated: 2024-07-27
Asymptotics for the standard block size in primal lattice attacks: second order, formally verified
Daniel J. Bernstein
Attacks and cryptanalysis

Many proposals of lattice-based cryptosystems estimate security levels by following a recipe introduced in the New Hope proposal. This recipe, given a lattice dimension n, modulus q, and standard deviation s, outputs a "primal block size" β and a security level growing linearly with β. This β is minimal such that some κ satisfies ((n κ)s^2 1)^{1/2} < (d/β)^{1/2} δ^{2β−d−1} q^{κ/d}, where d = n κ 1 and δ = (β(πβ)^{1/β}/(2π exp 1))^{1/2(β−1)}. This paper identifies how β grows with n,...

2024/591 (PDF) Last updated: 2024-04-16
Hash your Keys before Signing: BUFF Security of the Additional NIST PQC Signatures
Thomas Aulbach, Samed Düzlü, Michael Meyer, Patrick Struck, Maximiliane Weishäupl
Public-key cryptography

In this work, we analyze the so-called Beyond UnForgeability Features (BUFF) security of the submissions to the current standardization process of additional signatures by NIST. The BUFF notions formalize security against maliciously generated keys and have various real-world use cases, where security can be guaranteed despite misuse potential on a protocol level. Consequently, NIST declared the security against the BUFF notions as desirable features. Despite NIST's interest, only $6$ out of...

2024/585 (PDF) Last updated: 2024-04-29
A Complete Beginner Guide to the Number Theoretic Transform (NTT)
Ardianto Satriawan, Rella Mareta, Hanho Lee
Foundations

The Number Theoretic Transform (NTT) is a powerful mathematical tool that has become increasingly important in developing Post Quantum Cryptography (PQC) and Homomorphic Encryption (HE). Its ability to efficiently calculate polynomial multiplication using the convolution theorem with a quasi-linear complexity $O(n \log{n})$ instead of $O(n^2)$ when implemented with Fast Fourier Transform-style algorithms has made it a key component in modern cryptography. FFT-style NTT algorithm or fast-NTT...

2024/583 Last updated: 2024-04-19
A Note on Quantum Algorithms for Lattice Problems
Omri Shmueli
Attacks and cryptanalysis

Recently, a paper by Chen (eprint 2024/555) has claimed to construct a quantum polynomial-time algorithm that solves the Learning With Errors Problem (Regev, JACM 2009), for a range of parameters. As a byproduct of Chen's result, it follows that Chen's algorithm solves the Gap Shortest Vector Problem, for gap $g(n) = \tilde{O}\left( n^{4.5} \right)$. In this short note we point to an error in the claims of Chen's paper.

2024/582 (PDF) Last updated: 2024-08-18
Improved Alternating-Moduli PRFs and Post-Quantum Signatures
Navid Alamati, Guru-Vamsi Policharla, Srinivasan Raghuraman, Peter Rindal
Cryptographic protocols

We revisit the alternating-moduli paradigm for constructing symmetric-key primitives with a focus on constructing efficient protocols to evaluate them using secure multi-party computation (MPC). The alternating-moduli paradigm of Boneh, Ishai, Passelègue, Sahai, and Wu (TCC 2018) enables the construction of various symmetric-key primitives with the common characteristic that the inputs are multiplied by two linear maps over different moduli. The first contribution focuses on...

2024/555 (PDF) Last updated: 2024-04-19
Quantum Algorithms for Lattice Problems
Yilei Chen

We show a polynomial time quantum algorithm for solving the learning with errors problem (LWE) with certain polynomial modulus-noise ratios. Combining with the reductions from lattice problems to LWE shown by Regev [J.ACM 2009], we obtain polynomial time quantum algorithms for solving the decisional shortest vector problem (GapSVP) and the shortest independent vector problem (SIVP) for all $n$-dimensional lattices within approximation factors of $\tilde{\Omega}(n^{4.5})$. Previously, no...

2024/551 (PDF) Last updated: 2024-04-09
Probabilistic Algorithms with applications to countering Fault Attacks on Lattice based Post-Quantum Cryptography
Nimish Mishra, Debdeep Mukhopadhyay
Attacks and cryptanalysis

Fault attacks that exploit the propagation of effective/ineffective faults present a richer attack surface than Differential Fault Attacks, in the sense that the adversary depends on a single bit of information to eventually leak secret cryptographic material. In the recent past, a number of propagation-based fault attacks on Lattice-based Key Encapsulation Mechanisms have been proposed; many of which have no known countermeasures. In this work, we propose an orthogonal countermeasure...

2024/542 (PDF) Last updated: 2024-04-17
Breaking Bicoptor from S$\&$P 2023 Based on Practical Secret Recovery Attack
Jun Xu, Zhiwei Li, Lei Hu
Attacks and cryptanalysis

At S$\&$P 2023, a family of secure three-party computing protocols called Bicoptor was proposed by Zhou et al., which is used to compute non-linear functions in privacy preserving machine learning. In these protocols, two parties $P_0, P_1$ respectively hold the corresponding shares of the secret, while a third party $P_2$ acts as an assistant. The authors claimed that neither party in the Bicoptor can independently compromise the confidentiality of the input, intermediate, or output. In...

2024/540 (PDF) Last updated: 2024-04-07
Lattice-Based Timed Cryptography
Russell W. F. Lai, Giulio Malavolta
Public-key cryptography

Timed cryptography studies primitives that retain their security only for a predetermined amount of time, such as proofs of sequential work and time-lock puzzles. This feature has proven to be useful in a large number of practical applications, e.g. randomness generation, sealed-bid auctions, and fair multi-party computation. However, the current state of affairs in timed cryptography is unsatisfactory: Virtually all efficient constructions rely on a single sequentiality assumption, namely...

2024/512 (PDF) Last updated: 2024-04-14
Single Trace is All It Takes: Efficient Side-channel Attack on Dilithium
Zehua Qiao, Yuejun Liu, Yongbin Zhou, Yuhan Zhao, Shuyi Chen
Attacks and cryptanalysis

As we enter 2024, the post-quantum cryptographic algorithm Dilithium, which emerged from the National Institute of Standards and Technology post-quantum cryptography competition, has now reached the deployment stage. This paper focuses on the practical security of Dilithium. We performed practical attacks on Dilithium2 on an STM32F4 platform. Our results indicate that an attack can be executed with just two signatures within five minutes, with a single signature offering a 60% probability of...

2024/510 (PDF) Last updated: 2024-06-08
DoS-resistant Oblivious Message Retrieval and Snake-eye Resistant PKE from LWE
Zeyu Liu, Katerina Sotiraki, Eran Tromer, Yunhao Wang

Oblivious message retrieval (OMR) allows messages resource-limited recipients to outsource the message retrieval process without revealing which messages are pertinent to which recipient. Its realizations in recent works leave an open problem: can an OMR scheme be both practical and provably secure against spamming attacks from malicious senders (i.e., DoS-resistant) under standard assumptions? In this paper, we first prove that a prior construction OMRp2 is DoS-resistant under a...

2024/499 (PDF) Last updated: 2024-03-28
CCA Secure Updatable Encryption from Non-Mappable Group Actions
Jonas Meers, Doreen Riepel
Cryptographic protocols

Ciphertext-independent updatable encryption (UE) allows to rotate encryption keys and update ciphertexts via a token without the need to first download the ciphertexts. Although, syntactically, UE is a symmetric-key primitive, ciphertext-independent UE with forward secrecy and post-compromise security is known to imply public-key encryption (Alamati, Montgomery and Patranabis, CRYPTO 2019). Constructing post-quantum secure UE turns out to be a difficult task. While lattices offer the...

2024/498 (PDF) Last updated: 2024-04-01
Number-Theoretic Transform Architecture for Fully Homomorphic Encryption from Hypercube Topology
Jingwei Hu, Yuhong Fang, Wangchen Dai
Implementation

This paper introduces a high-performance and scalable hardware architecture designed for the Number-Theoretic Transform (NTT), a fundamental component extensively utilized in lattice-based encryption and fully homomorphic encryption schemes. The underlying rationale behind this research is to harness the advantages of the hypercube topology. This topology serves to significantly diminish the volume of data exchanges required during each iteration of the NTT, reducing it to a complexity of...

2024/496 (PDF) Last updated: 2024-07-02
Two-Round Threshold Signature from Algebraic One-More Learning with Errors
Thomas Espitau, Shuichi Katsumata, Kaoru Takemure
Cryptographic protocols

Threshold signatures have recently seen a renewed interest due to applications in cryptocurrency while NIST has released a call for multi-party threshold schemes, with a deadline for submission expected for the first half of 2025. So far, all lattice-based threshold signatures requiring less than two-rounds are based on heavy tools such as (fully) homomorphic encryption (FHE) and homomorphic trapdoor commitments (HTDC). This is not unexpected considering that most efficient two-round...

2024/485 (PDF) Last updated: 2024-03-25
A Variation on Knellwolf and Meier's Attack on the Knapsack Generator
Florette Martinez
Attacks and cryptanalysis

Pseudo-random generators are deterministic algorithms that take in input a random secret seed and output a flow of random-looking numbers. The Knapsack generator, presented by Rueppel and Massey in 1985 is one of the many attempt at designing a pseudo-random generator that is cryptographically secure. It is based on the subset-sum problem, a variant of the Knapsack optimization problem, which is considered computationally hard. In 2011 Simon Knellwolf et Willi Meier found a way to go...

2024/467 (PDF) Last updated: 2024-04-01
Partially Non-Interactive Two-Round Lattice-Based Threshold Signatures
Rutchathon Chairattana-Apirom, Stefano Tessaro, Chenzhi Zhu
Cryptographic protocols

This paper gives the first lattice-based two-round threshold signature based on lattice assumptions for which the first message is independent of the message being signed without relying on fully-homomorphic encryption, and our construction supports arbitrary thresholds. Our construction provides a careful instantiation of a generic threshold signature construction by Tessaro and Zhu (EUROCRYPT ’23) based on specific linear hash functions, which in turns can be seen as a generalization of...

2024/464 (PDF) Last updated: 2024-03-19
ON THE IMPLEMENTATION OF A LATTICE-BASED DAA FOR VANET SYSTEM
Doryan Lesaignoux, Mikael Carmona
Implementation

Direct Anonymous Attestation (DAA) is a cryptographic protocol that enables users with a Trusted Platform Module (TPM) to authenticate without revealing their identity. Thus, DAA emerged as a good privacy-enhancing solution. Current standards have security based on factorization and discrete logarithm problem making them vulnerable to quantum computer attacks. Recently, a number of lattice-based DAA has been propose in the literature to start transition to quantum-resistant cryptography. In...

2024/463 (PDF) Last updated: 2024-03-19
Security Guidelines for Implementing Homomorphic Encryption
Jean-Philippe Bossuat, Rosario Cammarota, Jung Hee Cheon, Ilaria Chillotti, Benjamin R. Curtis, Wei Dai, Huijing Gong, Erin Hales, Duhyeong Kim, Bryan Kumara, Changmin Lee, Xianhui Lu, Carsten Maple, Alberto Pedrouzo-Ulloa, Rachel Player, Luis Antonio Ruiz Lopez, Yongsoo Song, Donggeon Yhee, Bahattin Yildiz
Attacks and cryptanalysis

Fully Homomorphic Encryption (FHE) is a cryptographic primitive that allows performing arbitrary operations on encrypted data. Since the conception of the idea in [RAD78], it was considered a holy grail of cryptography. After the first construction in 2009 [Gen09], it has evolved to become a practical primitive with strong security guarantees. Most modern constructions are based on well-known lattice problems such as Learning with Errors (LWE). Besides its academic appeal, in recent years...

2024/457 (PDF) Last updated: 2024-03-18
Studying Lattice-Based Zero-Knowlege Proofs: A Tutorial and an Implementation of Lantern
Lena Heimberger, Florian Lugstein, Christian Rechberger
Implementation

Lattice-based cryptography has emerged as a promising new candidate to build cryptographic primitives. It offers resilience against quantum attacks, enables fully homomorphic encryption, and relies on robust theoretical foundations. Zero-knowledge proofs (ZKPs) are an essential primitive for various privacy-preserving applications. For example, anonymous credentials, group signatures, and verifiable oblivious pseudorandom functions all require ZKPs. Currently, the majority of ZKP systems are...

2024/450 (PDF) Last updated: 2024-03-15
The 2Hash OPRF Framework and Efficient Post-Quantum Instantiations
Ward Beullens, Lucas Dodgson, Sebastian Faller, Julia Hesse
Cryptographic protocols

An Oblivious Pseudo-Random Function (OPRF) is a two-party protocol for jointly evaluating a Pseudo-Random Function (PRF), where a user has an input x and a server has an input k. At the end of the protocol, the user learns the evaluation of the PRF using key k at the value x, while the server learns nothing about the user's input or output. OPRFs are a prime tool for building secure authentication and key exchange from passwords, private set intersection, private information retrieval,...

2024/449 (PDF) Last updated: 2024-03-15
Practical Lattice-Based Distributed Signatures for a Small Number of Signers
Nabil Alkeilani Alkadri, Nico Döttling, Sihang Pu
Public-key cryptography

$n$-out-of-$n$ distributed signatures are a special type of threshold $t$-out-of-$n$ signatures. They are created by a group of $n$ signers, each holding a share of the secret key, in a collaborative way. This kind of signatures has been studied intensively in recent years, motivated by different applications such as reducing the risk of compromising secret keys in cryptocurrencies. Towards maintaining security in the presence of quantum adversaries, Damgård et al. (J Cryptol 35(2), 2022)...

2024/443 (PDF) Last updated: 2024-03-14
The cool and the cruel: separating hard parts of LWE secrets
Niklas Nolte, Mohamed Malhou, Emily Wenger, Samuel Stevens, Cathy Yuanchen Li, Francois Charton, Kristin Lauter
Attacks and cryptanalysis

Sparse binary LWE secrets are under consideration for standardization for Homomorphic Encryption and its applications to private computation. Known attacks on sparse binary LWE secrets include the sparse dual attack and the hybrid sparse dual-meet in the middle attack, which requires significant memory. In this paper, we provide a new statistical attack with low memory requirement. The attack relies on some initial parallelized lattice reduction. The key observation is that, after...

2024/441 (PDF) Last updated: 2024-05-22
Cryptanalysis of rank-2 module-LIP in Totally Real Number Fields
Guilhem Mureau, Alice Pellet-Mary, Heorhii Pliatsok, Alexandre Wallet
Attacks and cryptanalysis

At Asiacrypt 2022, Ducas, Postlethwaite, Pulles, and van Woerden introduced the Lattice Isomorphism Problem for module lattices in a number field $K$ (module-LIP). In this article, we describe an algorithm solving module-LIP for modules of rank $2$ in $K^2$, when $K$ is a totally real number field. Our algorithm exploits the connection between this problem, relative norm equations and the decomposition of algebraic integers as sums of two squares. For a large class of modules (including...

2024/424 (PDF) Last updated: 2024-08-06
Revisiting the Security of Approximate FHE with Noise-Flooding Countermeasures
Flavio Bergamaschi, Anamaria Costache, Dana Dachman-Soled, Hunter Kippen, Lucas LaBuff, Rui Tang
Attacks and cryptanalysis

Approximate fully homomorphic encryption (FHE) schemes, such as the CKKS scheme (Cheon, Kim, Kim, Song, ASIACRYPT '17), are among the leading schemes in terms of efficiency and are particularly suitable for Machine Learning (ML) tasks. Although efficient, approximate FHE schemes have some inherent risks: Li and Micciancio (EUROCRYPT '21) demonstrated that while these schemes achieved the standard notion of CPA-security, they failed against a variant, $\mathsf{IND}\mbox{-}\mathsf{CPA}^D$, in...

2024/411 (PDF) Last updated: 2024-07-08
Polytopes in the Fiat-Shamir with Aborts Paradigm
Henry Bambury, Hugo Beguinet, Thomas Ricosset, Eric Sageloli
Public-key cryptography

The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution. Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these distributions suffer from the complexity of their sampler. So far, those three distributions are the...

2024/410 (PDF) Last updated: 2024-03-07
Recent Progress in Quantum Computing Relevant to Internet Security
Hilarie Orman
Attacks and cryptanalysis

Quantum computers at some future date might be able to factor large numbers, and this poses a threat to some public key and key exchange systems in use today. This overview of recent progress in devising quantum algorithms and building quantum computing devices is meant to help technologists understand the difficult problems that quantum engineers are working on, where advances have been made, and how those things affect estimates of if and when large scale quantum computation might happen.

2024/401 (PDF) Last updated: 2024-03-05
Plover: Masking-Friendly Hash-and-Sign Lattice Signatures
Muhammed F. Esgin, Thomas Espitau, Guilhem Niot, Thomas Prest, Amin Sakzad, Ron Steinfeld
Public-key cryptography

We introduce a toolkit for transforming lattice-based hash-and-sign signature schemes into masking-friendly signatures secure in the t-probing model. Until now, efficiently masking lattice-based hash-and-sign schemes has been an open problem, with unsuccessful attempts such as Mitaka. A first breakthrough was made in 2023 with the NIST PQC submission Raccoon, although it was not formally proven. Our main conceptual contribution is to realize that the same principles underlying Raccoon...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.