Dates are inconsistent

Dates are inconsistent

831 results sorted by ID

Possible spell-corrected query: key exchange protocol.
2024/1283 (PDF) Last updated: 2024-08-14
Password-authenticated Cryptography from Consumable Tokens
Ghada Almashaqbeh
Cryptographic protocols

Passwords are widely adopted for user authentication in practice, which led to the question of whether we can bootstrap a strongly-secure setting based on them. Historically, this has been extensively studied for key exchange; bootstrap from a low-entropy password to a high entropy key securing the communication. Other instances include digital lockers, signatures, secret sharing, and encryption. Motivated by a recent work on consumable tokens (Almashaqbeh et al., Eurocrypt 2022), we...

2024/1226 (PDF) Last updated: 2024-07-31
A Spectral Analysis of Noise: A Comprehensive, Automated, Formal Analysis of Diffie-Hellman Protocols
Guillaume Girol, Lucca Hirschi, Ralf Sasse, Dennis Jackson, Cas Cremers, David Basin
Cryptographic protocols

The Noise specification describes how to systematically construct a large family of Diffie-Hellman based key exchange protocols, including the secure transports used by WhatsApp, Lightning, and WireGuard. As the specification only makes informal security claims, earlier work has explored which formal security properties may be enjoyed by protocols in the Noise framework, yet many important questions remain open. In this work we provide the most comprehensive, systematic analysis of the...

2024/1215 (PDF) Last updated: 2024-07-29
Falsifiability, Composability, and Comparability of Game-based Security Models for Key Exchange Protocols
Chris Brzuska, Cas Cremers, Håkon Jacobsen, Douglas Stebila, Bogdan Warinschi
Cryptographic protocols

A security proof for a key exchange protocol requires writing down a security definition. Authors typically have a clear idea of the level of security they aim to achieve. Defining the model formally additionally requires making choices on games vs. simulation-based models, partnering, on having one or more Test queries and on adopting a style of avoiding trivial attacks: exclusion, penalizing or filtering. We elucidate the consequences, advantages and disadvantages of the different possible...

2024/1171 (PDF) Last updated: 2024-07-19
Tight Time-Space Tradeoffs for the Decisional Diffie-Hellman Problem
Akshima, Tyler Besselman, Siyao Guo, Zhiye Xie, Yuping Ye
Foundations

In the (preprocessing) Decisional Diffie-Hellman (DDH) problem, we are given a cyclic group $G$ with a generator $g$ and a prime order $N$, and we want to prepare some advice of size $S$, such that we can efficiently distinguish $(g^{x},g^{y},g^{xy})$ from $(g^{x},g^{y},g^{z})$ in time $T$ for uniformly and independently chosen $x,y,z$ from $\mathbb{Z}_N$. This is a central cryptographic problem whose computational hardness underpins many widely deployed schemes, such as the Diffie–Hellman...

2024/1169 (PDF) Last updated: 2024-07-19
Attacking Tropical Stickel Protocol by MILP and Heuristic Optimization Techniques
Sulaiman Alhussaini, Serge˘ı Sergeev
Attacks and cryptanalysis

Known attacks on the tropical implementation of Stickel protocol involve solving a minimal covering problem, and this leads to an exponential growth in the time required to recover the secret key as the used polynomial degree increases. Consequently, it can be argued that Alice and Bob can still securely execute the protocol by utilizing very high polynomial degrees, a feasible approach due to the efficiency of tropical operations. The same is true for the implementation of Stickel protocol...

2024/1120 (PDF) Last updated: 2024-07-09
A Fast and Efficient SIKE Co-Design: Coarse-Grained Reconfigurable Accelerators with Custom RISC-V Microcontroller on FPGA
Jing Tian, Bo Wu, Lang Feng, Haochen Zhang, Zhongfeng Wang
Implementation

This paper proposes a fast and efficient FPGA-based hardware-software co-design for the supersingular isogeny key encapsulation (SIKE) protocol controlled by a custom RISC-V processor. Firstly, we highly optimize the core unit, the polynomial-based field arithmetic logic unit (FALU), with the proposed fast convolution-like multiplier (FCM) to significantly reduce the resource consumption while still maintaining low latency and constant time for all the four SIKE parameters. Secondly, we pack...

2024/1116 (PDF) Last updated: 2024-07-09
A Simple Post-Quantum Oblivious Transfer Protocol from Mod-LWR
Shen Dong, Hongrui Cui, Kaiyi Zhang, Kang Yang, Yu Yu
Cryptographic protocols

Oblivious transfer (OT) is a fundamental cryptographic protocol that plays a crucial role in secure multi-party computation (MPC). Most practical OT protocols by, e.g., Naor and Pinkas (SODA'01) or Chou and Orlandi (Latincrypt'15), are based on Diffie-Hellman (DH)-like assumptions and not post-quantum secure. In contrast, many other components of MPC protocols, including garbled circuits and secret sharings, are post-quantum secure. The reliance on non-post-quantum OT protocols presents a...

2024/1096 (PDF) Last updated: 2024-07-05
Post-Quantum Ready Key Agreement for Aviation
Marcel Tiepelt, Christian Martin, Nils Maeurer
Cryptographic protocols

Transitioning from classically to quantum secure key agreement protocols may require to exchange fundamental components, for example, exchanging Diffie-Hellman-like key exchange with a key encapsulation mechanism (KEM). Accordingly, the corresponding security proof can no longer rely on the Diffie-Hellman assumption, thus invalidating the security guarantees. As a consequence, the security properties have to be re-proven under a KEM-based security notion. We initiate the study of the...

2024/1086 (PDF) Last updated: 2024-08-12
Obfuscated Key Exchange
Felix Günther, Douglas Stebila, Shannon Veitch
Cryptographic protocols

Censorship circumvention tools enable clients to access endpoints in a network despite the presence of a censor. Censors use a variety of techniques to identify content they wish to block, including filtering traffic patterns that are characteristic of proxy or circumvention protocols and actively probing potential proxy servers. Circumvention practitioners have developed fully encrypted protocols (FEPs), intended to have traffic that appears indistinguishable from random. A FEP is typically...

2024/1057 (PDF) Last updated: 2024-06-28
Password-authenticated Key Exchange and Applications
Kristian Gjøsteen
Cryptographic protocols

We analyse a two password-authenticated key exchange protocols, a variant of CPace and a protocol related to the well-known SRP protocol. Our security results are tight. The first result gives us some information about trade-offs for design choices in CPace. The second result provides information about the security of SRP. Our analysis is done in a new game-based security definition for password-authenticated key exchange. Our definition accomodates arbitrary password sampling...

2024/888 (PDF) Last updated: 2024-06-04
zkCross: A Novel Architecture for Cross-Chain Privacy-Preserving Auditing
Yihao Guo, Minghui Xu, Xiuzhen Cheng, Dongxiao Yu, Wangjie Qiu, Gang Qu, Weibing Wang, Mingming Song
Cryptographic protocols

One of the key areas of focus in blockchain research is how to realize privacy-preserving auditing without sacrificing the system’s security and trustworthiness. However, simultaneously achieving auditing and privacy protection, two seemingly contradictory objectives, is challenging because an auditing system would require transparency and accountability which might create privacy and security vulnerabilities. This becomes worse in cross-chain scenarios, where the information silos from...

2024/874 (PDF) Last updated: 2024-06-01
Fake It till You Make It: Enhancing Security of Bluetooth Secure Connections via Deferrable Authentication
Marc Fischlin, Olga Sanina
Cryptographic protocols

The Bluetooth protocol for wireless connection between devices comes with several security measures to protect confidentiality and integrity of data. At the heart of these security protocols lies the Secure Simple Pairing, wherewith the devices can negotiate a shared key before communicating sensitive data. Despite the good intentions, the Bluetooth security protocol has repeatedly been shown to be vulnerable, especially with regard to active attacks on the Secure Simple Pairing. We...

2024/834 (PDF) Last updated: 2024-05-28
Fine-Grained Non-Interactive Key Exchange, Revisited
Balthazar Bauer, Geoffroy Couteau, Elahe Sadeghi
Public-key cryptography

We revisit the construction of multiparty non-interactive key-exchange protocols with fine-grained security, which was recently studied in (Afshar et al., Eurocrypt 2023). Their work introduced a 4-party non-interactive key exchange with quadratic hardness, and proved it secure in Shoup's generic group model. This positive result was complemented with a proof that $n$-party non-interactive key exchange with superquadratic security cannot exist in Maurer's generic group model, for any $n\geq...

2024/756 (PDF) Last updated: 2024-05-17
(Strong) aPAKE Revisited: Capturing Multi-User Security and Salting
Dennis Dayanikli, Anja Lehmann
Cryptographic protocols

Asymmetric Password-Authenticated Key Exchange (aPAKE) protocols, particularly Strong aPAKE (saPAKE) have enjoyed significant attention, both from academia and industry, with the well-known OPAQUE protocol currently undergoing standardization. In (s)aPAKE, a client and a server collaboratively establish a high-entropy key, relying on a previously exchanged password for authentication. A main feature is its resilience against offline and precomputation (for saPAKE) attacks. OPAQUE, as well as...

2024/741 (PDF) Last updated: 2024-05-15
A Deniability Analysis of Signal's Initial Handshake PQXDH
Rune Fiedler, Christian Janson
Cryptographic protocols

Many use messaging apps such as Signal to exercise their right to private communication. To cope with the advent of quantum computing, Signal employs a new initial handshake protocol called PQXDH for post-quantum confidentiality, yet keeps guarantees of authenticity and deniability classical. Compared to its predecessor X3DH, PQXDH includes a KEM encapsulation and a signature on the ephemeral key. In this work we show that PQXDH does not meet the same deniability guarantees as X3DH due to...

2024/702 (PDF) Last updated: 2024-05-07
Security Analysis of Signal's PQXDH Handshake
Rune Fiedler, Felix Günther
Cryptographic protocols

Signal recently deployed a new handshake protocol named PQXDH to protect against "harvest-now-decrypt-later" attacks of a future quantum computer. To this end, PQXDH adds a post-quantum KEM to the Diffie-Hellman combinations of the prior X3DH handshake. In this work, we give a reductionist security analysis of Signal's PQXDH handshake in a game-based security model that captures the targeted "maximum-exposure" security, allowing fine-grained compromise of user's long-term, semi-static,...

2024/686 (PDF) Last updated: 2024-05-04
Unstructured Inversions of New Hope
Ian Malloy
Attacks and cryptanalysis

Introduced as a new protocol implemented in “Chrome Canary” for the Google Inc. Chrome browser, “New Hope” is engineered as a post-quantum key exchange for the TLS 1.2 protocol. The structure of the exchange is revised lattice-based cryptography. New Hope incorporates the key-encapsulation mechanism of Peikert which itself is a modified Ring-LWE scheme. The search space used to introduce the closest-vector problem is generated by an intersection of a tesseract and hexadecachoron, or the...

2024/683 (PDF) Last updated: 2024-05-04
A note on ``a new password-authenticated module learning with rounding-based key exchange protocol: Saber.PAKE''
Zhengjun Cao, Lihua Liu
Attacks and cryptanalysis

We show the Seyhan-Akleylek key exchange protocol [J. Supercomput., 2023, 79:17859-17896] cannot resist offline dictionary attack and impersonation attack, not as claimed.

2024/576 (PDF) Last updated: 2024-04-15
On complexity of the problem of solving systems of tropical polynomial equations of degree two
Ivan Buchinskiy, Matvei Kotov, Alexander Treier
Foundations

In this paper, we investigate the computational complexity of the problem of solving a one-sided system of equations of degree two of a special form over the max-plus algebra. Also, we consider the asymptotic density of solvable systems of this form. Such systems have appeared during the analysis of some tropical cryptography protocols that were recently suggested. We show how this problem is related to the integer linear programming problem and prove that this problem is NP-complete. We...

2024/569 (PDF) Last updated: 2024-04-12
An overview of symmetric fuzzy PAKE protocols
Johannes Ottenhues
Cryptographic protocols

Fuzzy password authenticated key exchange (fuzzy PAKE) protocols enable two parties to securely exchange a session-key for further communication. The parties only need to share a low entropy password. The passwords do not even need to be identical, but can contain some errors. This may be due to typos, or because the passwords were created from noisy biometric readings. In this paper we provide an overview and comparison of existing fuzzy PAKE protocols. Furthermore, we analyze certain...

2024/561 (PDF) Last updated: 2024-04-23
SQIAsignHD: SQIsignHD Adaptor Signature
Farzin Renan, Péter Kutas
Public-key cryptography

Adaptor signatures can be viewed as a generalized form of the standard digital signature schemes where a secret randomness is hidden within a signature. Adaptor signatures are a recent cryptographic primitive and are becoming an important tool for blockchain applications such as cryptocurrencies to reduce on-chain costs, improve fungibility, and contribute to off-chain forms of payment in payment-channel networks, payment-channel hubs, and atomic swaps. However, currently used adaptor...

2024/519 (PDF) Last updated: 2024-04-02
On implementation of Stickel's key exchange protocol over max-min and max-$T$ semirings
Sulaiman Alhussaini, Serge˘ı Sergeev
Public-key cryptography

Given that the tropical Stickel protocol and its variants are all vulnerable to the generalized Kotov-Ushakov attack, we suggest employing the max-min semiring and, more generally, max-$T$ semiring where the multiplication is based on a $T-$norm, as a framework to implement the Stickel protocol. While the Stickel protocol over max-min semiring or max-$T$ semiring remains susceptible to a form of Kotov-Ushakov attack, we demonstrate that it exhibits significantly increased resistance against...

2024/484 (PDF) Last updated: 2024-03-25
Harmonizing PUFs for Forward Secure Authenticated Key Exchange with Symmetric Primitives
Harishma Boyapally, Durba Chatterjee, Kuheli Pratihar, Sayandeep Saha, Debdeep Mukhopadhyay, Shivam Bhasin
Cryptographic protocols

Physically Unclonable Functions (PUFs) have been a potent choice for enabling low-cost, secure communication. However, in most applications, one party holds the PUF, and the other securely stores the challenge-response pairs (CRPs). It does not remove the need for secure storage entirely, which is one of the goals of PUFs. This paper proposes a PUF-based construction called Harmonizing PUFs ($\textsf{H_PUF}$s), allowing two independent PUFs to generate the same outcome without storing...

2024/471 (PDF) Last updated: 2024-05-23
Knot-based Key Exchange protocol
Silvia Sconza, Arno Wildi
Public-key cryptography

We propose a new key exchange protocol based on the Generalised Diffie-Hellman Key Exchange. In the latter, instead of using a group-action, we consider a semigroup action. In our proposal, the semigroup is the set of oriented knots in $\mathbb{S}^3$ with the operation of connected sum. As a semigroup action, we choose the action of the semigroup on itself through the connected sum. For the protocol to work, we need to use knot invariants, which allow us to create the shared secret key...

2024/450 (PDF) Last updated: 2024-03-15
The 2Hash OPRF Framework and Efficient Post-Quantum Instantiations
Ward Beullens, Lucas Dodgson, Sebastian Faller, Julia Hesse
Cryptographic protocols

An Oblivious Pseudo-Random Function (OPRF) is a two-party protocol for jointly evaluating a Pseudo-Random Function (PRF), where a user has an input x and a server has an input k. At the end of the protocol, the user learns the evaluation of the PRF using key k at the value x, while the server learns nothing about the user's input or output. OPRFs are a prime tool for building secure authentication and key exchange from passwords, private set intersection, private information retrieval,...

2024/418 (PDF) Last updated: 2024-03-18
Atomic and Fair Data Exchange via Blockchain
Ertem Nusret Tas, István András Seres, Yinuo Zhang, Márk Melczer, Mahimna Kelkar, Joseph Bonneau, Valeria Nikolaenko
Cryptographic protocols

We introduce a blockchain Fair Data Exchange (FDE) protocol, enabling a storage server to transfer a data file to a client atomically: the client receives the file if and only if the server receives an agreed-upon payment. We put forth a new definition for a cryptographic scheme that we name verifiable encryption under committed key (VECK), and we propose two instantiations for this scheme. Our protocol relies on a blockchain to enforce the atomicity of the exchange and uses VECK to ensure...

2024/361 (PDF) Last updated: 2024-02-28
Key Exchange with Tight (Full) Forward Secrecy via Key Confirmation
Jiaxin Pan, Doreen Riepel, Runzhi Zeng
Public-key cryptography

Weak forward secrecy (wFS) of authenticated key exchange (AKE) protocols is a passive variant of (full) forward secrecy (FS). A natural mechanism to upgrade from wFS to FS is the use of key confirmation messages which compute a message authentication code (MAC) over the transcript. Unfortunately, Gellert, Gjøsteen, Jacobson and Jager (GGJJ, CRYPTO 2023) show that this mechanism inherently incurs a loss proportional to the number of users, leading to an overall non-tight reduction, even if...

2024/357 (PDF) Last updated: 2024-02-28
Security analysis of the iMessage PQ3 protocol
Douglas Stebila
Cryptographic protocols

The iMessage PQ3 protocol is an end-to-end encrypted messaging protocol designed for exchanging data in long-lived sessions between two devices. It aims to provide classical and post-quantum confidentiality for forward secrecy and post-compromise secrecy, as well as classical authentication. Its initial authenticated key exchange is constructed from digital signatures plus elliptic curve Diffie–Hellman and post-quantum key exchanges; to derive per-message keys on an ongoing basis, it employs...

2024/345 (PDF) Last updated: 2024-02-27
An Efficient Adaptive Attack Against FESTA
Guoqing Zhou, Maozhi Xu
Attacks and cryptanalysis

At EUROCRYPT’23, Castryck and Decru, Maino et al., and Robert present efficient attacks against supersingular isogeny Diffie-Hellman key exchange protocol (SIDH). Drawing inspiration from these attacks, Andrea Basso, Luciano Maino, and Giacomo Pope introduce FESTA, an isogeny-based trapdoor function, along with a corresponding IND-CCA secure public key encryption (PKE) protocol at ASIACRYPT’23. FESTA incorporates either a diagonal or circulant matrix into the secret key to mask torsion...

2024/324 (PDF) Last updated: 2024-03-09
Under What Conditions Is Encrypted Key Exchange Actually Secure?
Jake Januzelli, Lawrence Roy, Jiayu Xu
Cryptographic protocols

A Password-Authenticated Key Exchange (PAKE) protocol allows two parties to agree upon a cryptographic key, in the setting where the only secret shared in advance is a low-entropy password. The standard security notion for PAKE is in the Universal Composability (UC) framework. In recent years there have been a large number of works analyzing the UC-security of Encrypted Key Exchange (EKE), the very first PAKE protocol, and its One-encryption variant (OEKE), both of which compile an...

2024/308 (PDF) Last updated: 2024-02-23
C'est très CHIC: A compact password-authenticated key exchange from lattice-based KEM
Afonso Arriaga, Manuel Barbosa, Stanislaw Jarecki, Marjan Skrobot
Cryptographic protocols

Several Password Authenticated Key Exchange (PAKE) protocols have been recently proposed that leverage a Key-Encapsulation Mechanism (KEM) to create an efficient and easy-to-implement post-quantum secure PAKE. This line of work is driven by the intention of the National Institute of Standards and Technology (NIST) to soon standardize a lattice-based post-quantum KEM called $\mathsf{Kyber}$. In two recent works, Beguinet et al. (ACNS 2023) and Pan and Zeng (ASIACRYPT 2023) proposed generic...

2024/307 (PDF) Last updated: 2024-02-23
SweetPAKE: Key exchange with decoy passwords
Afonso Arriaga, Peter Y.A. Ryan, Marjan Skrobot
Cryptographic protocols

Decoy accounts are often used as an indicator of the compromise of sensitive data, such as password files. An attacker targeting only specific known-to-be-real accounts might, however, remain undetected. A more effective method proposed by Juels and Rivest at CCS'13 is to maintain additional fake passwords associated with each account. An attacker who gains access to the password file is unable to tell apart real passwords from fake passwords, and the attempted usage of a false password...

2024/236 (PDF) Last updated: 2024-02-14
Public-Key Cryptography through the Lens of Monoid Actions
Hart Montgomery, Sikhar Patranabis
Foundations

We show that key exchange and two-party computation are exactly equivalent to monoid actions with certain structural and hardness properties. To the best of our knowledge, this is the first "natural" characterization of the mathematical structure inherent to any key exchange or two-party computation protocol, and the first explicit proof of the necessity of mathematical structure for public-key cryptography. We then utilize these characterizations to show a new black-box separation result,...

2024/234 (PDF) Last updated: 2024-05-30
Bare PAKE: Universally Composable Key Exchange from just Passwords
Manuel Barbosa, Kai Gellert, Julia Hesse, Stanislaw Jarecki
Cryptographic protocols

In the past three decades, an impressive body of knowledge has been built around secure and private password authentication. In particular, secure password-authenticated key exchange (PAKE) protocols require only minimal overhead over a classical Diffie-Hellman key exchange. PAKEs are also known to fulfill strong composable security guarantees that capture many password-specific concerns such as password correlations or password mistyping, to name only a few. However, to enjoy both...

2024/208 Last updated: 2024-05-08
Asymmetric Cryptography from Number Theoretic Transformations
Samuel Lavery
Public-key cryptography

In this work, we introduce a family of asymmetric cryptographic functions based on dynamic number theoretic transformations with multiple rounds of modular arithmetic to enhance diffusion and difficulty of inversion. This function acts as a basic cryptographic building block for a novel communication-efficient zero-knowledge crypto-system. The system as defined exhibits partial homomorphism and behaves as an additive positive accumulator. By using a novel technique to constructively embed...

2024/120 (PDF) Last updated: 2024-01-29
K-Waay: Fast and Deniable Post-Quantum X3DH without Ring Signatures
Daniel Collins, Loïs Huguenin-Dumittan, Ngoc Khanh Nguyen, Nicolas Rolin, Serge Vaudenay
Cryptographic protocols

The Signal protocol and its X3DH key exchange core are regularly used by billions of people in applications like WhatsApp but are unfortunately not quantum-secure. Thus, designing an efficient and post-quantum secure X3DH alternative is paramount. Notably, X3DH supports asynchronicity, as parties can immediately derive keys after uploading them to a central server, and deniability, allowing parties to plausibly deny having completed key exchange. To satisfy these constraints, existing...

2024/062 Last updated: 2024-08-05
Double Difficulties, Defense in Depth A succinct authenticated key agreement protocol
WenBin Hsieh

In 2016, NIST announced an open competition with the goal of finding and standardizing a suitable quantum-resistant cryptographic algorithm, with the standard to be drafted in 2023. These algorithms aim to implement post-quantum secure key encapsulation mechanism (KEM) and digital signatures. However, the proposed algorithm does not consider authentication and is vulnerable to attacks such as man-in-the-middle. In this paper, we propose an authenticated key exchange algorithm to solve the...

2024/046 (PDF) Last updated: 2024-01-11
Quantum-Secure Hybrid Communication for Aviation Infrastructure
Benjamin Dowling, Bhagya Wimalasiri
Cryptographic protocols

The rapid digitization of aviation communication and its dependent critical operations demand secure protocols that address domain-specific security requirements within the unique functional constraints of the aviation industry. These secure protocols must provide sufficient security against current and possible future attackers, given the inherent nature of the aviation community, that is highly complex and averse to frequent upgrades as well as its high safety and cost considerations. In...

2024/010 (PDF) Last updated: 2024-01-03
On the tropical two-sided discrete logarithm and a key exchange protocol based on the tropical algebra of pairs
Sulaiman Alhussaini, Craig Collett, Serge˘ı Sergeev
Attacks and cryptanalysis

Since the existing tropical cryptographic protocols are either susceptible to the Kotov-Ushakov attack and its generalization, or to attacks based on tropical matrix periodicity and predictive behaviour, several attempts have been made to propose protocols that resist such attacks. Despite these attempts, many of the proposed protocols remain vulnerable to attacks targeting the underlying hidden problems, one of which we call the tropical two-sided discrete logarithm with shift. An...

2024/007 (PDF) Last updated: 2024-01-03
Password Protected Universal Thresholdizer
Sabyasachi Dutta, Partha Sarathi Roy, Reihaneh Safavi-Naini, Willy Susilo
Cryptographic protocols

Universal thresholdizer (UT) was proposed by Boneh et al. in CRYPTO'18 as a general framework for thresholdizing non-threshold cryptographic primitives where a set of $N$ servers, each gets a share such that any set of $k$ servers, each produces a partial result, which can be combined to generate the final result. In many applications of threshold cryptography such as the protection of private keys in a digital wallet, the combining operation of partial results must be protected. In this...

2023/1953 (PDF) Last updated: 2023-12-24
Efficient quantum algorithms for some instances of the semidirect discrete logarithm problem
Muhammad Imran, Gábor Ivanyos
Attacks and cryptanalysis

The semidirect discrete logarithm problem (SDLP) is the following analogue of the standard discrete logarithm problem in the semidirect product semigroup $G\rtimes \mathrm{End}(G)$ for a finite semigroup $G$. Given $g\in G, \sigma\in \mathrm{End}(G)$, and $h=\prod_{i=0}^{t-1}\sigma^i(g)$ for some integer $t$, the SDLP$(G,\sigma)$, for $g$ and $h$, asks to determine $t$. As Shor's algorithm crucially depends on commutativity, it is believed not to be applicable to the SDLP. Previously, the...

2023/1933 (PDF) Last updated: 2024-08-02
Keeping Up with the KEMs: Stronger Security Notions for KEMs and automated analysis of KEM-based protocols
Cas Cremers, Alexander Dax, Niklas Medinger
Public-key cryptography

Key Encapsulation Mechanisms (KEMs) are a critical building block for hybrid encryption and modern security protocols, notably in the post-quantum setting. Given the asymmetric public key of a recipient, the primitive establishes a shared secret key between sender and recipient. In recent years, a large number of abstract designs and concrete implementations of KEMs have been proposed, e.g., in the context of the NIST process for post-quantum primitives. In this work, we (i)...

2023/1926 (PDF) Last updated: 2023-12-21
NOTRY: deniable messaging with retroactive avowal
Faxing Wang, Shaanan Cohney, Riad Wahby, Joseph Bonneau
Cryptographic protocols

Modern secure messaging protocols typically aim to provide deniability. Achieving this requires that convincing cryptographic transcripts can be forged without the involvement of genuine users. In this work, we observe that parties may wish to revoke deniability and avow a conversation after it has taken place. We propose a new protocol called Not-on-the-Record-Yet (NOTRY) which enables users to prove a prior conversation transcript is genuine. As a key building block we propose avowable...

2023/1904 (PDF) Last updated: 2024-06-27
Generalized Kotov-Ushakov Attack on Tropical Stickel Protocol Based on Modified Tropical Circulant Matrices
Sulaiman Alhussaini, Craig Collett, Serge˘ı Sergeev
Attacks and cryptanalysis

After the Kotov-Ushakov attack on the tropical implementation of Stickel protocol, various attempts have been made to create a secure variant of such implementation. Some of these attempts used a special class of commuting matrices resembling tropical circulants, and they have been proposed with claims of resilience against the Kotov-Ushakov attack, and even being potential post-quantum candidates. This paper, however, reveals that a form of the Kotov-Ushakov attack remains applicable and,...

2023/1903 (PDF) Last updated: 2024-05-16
Quarantined-TreeKEM: a Continuous Group Key Agreement for MLS, Secure in Presence of Inactive Users
Céline Chevalier, Guirec Lebrun, Ange Martinelli
Cryptographic protocols

The recently standardized secure group messaging protocol “Messaging Layer Security” (MLS) is designed to ensure asynchronous communication within large groups, with an almost-optimal communication cost and the same security level as point-to-point secure messaging protocols such as “Signal”. In particular, the core sub-protocol of MLS, a Continuous Group Key Agreement (CGKA) called TreeKEM, must generate a common group key that respects the fundamental security properties of...

2023/1873 (PDF) Last updated: 2024-07-24
SoK: Post-Quantum TLS Handshake
Nouri Alnahawi, Johannes Müller, Jan Oupický, Alexander Wiesmaier
Cryptographic protocols

Transport Layer Security (TLS) is the backbone security protocol of the Internet. As this fundamental protocol is at risk from future quantum attackers, many proposals have been made to protect TLS against this threat by implementing post-quantum cryptography (PQC). The widespread interest in post-quantum TLS has given rise to a large number of solutions over the last decade. These proposals differ in many aspects, including the security properties they seek to protect, the efficiency and...

2023/1827 (PDF) Last updated: 2023-11-28
Key Exchange in the Post-Snowden Era: UC Secure Subversion-Resilient PAKE
Suvradip Chakraborty, Lorenzo Magliocco, Bernardo Magri, Daniele Venturi
Public-key cryptography

Password-Authenticated Key Exchange (PAKE) allows two parties to establish a common high-entropy secret from a possibly low-entropy pre-shared secret such as a password. In this work, we provide the first PAKE protocol with subversion resilience in the framework of universal composability (UC), where the latter roughly means that UC security still holds even if one of the two parties is malicious and the honest party's code has been subverted (in an undetectable manner). We achieve this...

2023/1761 (PDF) Last updated: 2023-11-20
Guardianship in Group Key Exchange for Limited Environments
Elsie Mestl Fondevik, Britta Hale, Xisen Tian
Cryptographic protocols

Post-compromise security (PCS) has been a core goal of end-to-end encrypted messaging applications for many years, both in one-to-one continuous key agreement (CKA) and for groups (CGKA). At its essence, PCS relies on a compromised party to perform a key update in order to `self-heal'. However, due to bandwidth constraints, receive-only mode, and various other environmental demands of the growing number of use cases for such CGKA protocols, a group member may not be able to issue such...

2023/1753 Last updated: 2023-11-27
Formal verification of the post-quantum security properties of IKEv2 PPK (RFC 8784) using the Tamarin Prover
Sophie Stevens
Cryptographic protocols

The Internet Key Exchange version 2 (IKEv2) (RFC 7296) is a component of IPsec used to authenticate two parties (the initiator and responder) to each other and to establish a set of security parameters for the communications. The security parameters include secret keys to encrypt and authenticate data as well as the negotiation of a set of cryptographic algorithms. The core documentation uses exclusively Diffie-Hellman exchanges to agree the security information. However, this is not a...

2023/1709 (PDF) Last updated: 2023-11-03
Signal Leakage Attack Meets Depth First Search: an Improved Approach on DXL Key Exchange Protocol
Zhiwei Li, Jun Xu, Lei Hu

In 2012, Ding, Xie and Lin designed a key exchange protocol based on Ring-LWE problem, called the DXL key exchange protocol, which can be seen as an extended version of the Diffie-Hellman key exchange. In this protocol, Ding et al. achieved key exchange between the communicating parties according to the associativity of matrix multiplications, that is, $(x^T\cdot A)\cdot y = x^T\cdot (A\cdot y)$, where $x,y$ are column vectors and $A$ is a square matrix. However, the DXL key exchange...

2023/1707 (PDF) Last updated: 2023-11-03
Analysis of four protocols based on tropical circulant matrices
Ivan Buchinskiy, Matvei Kotov, Alexander Treier
Attacks and cryptanalysis

Several key exchange protocols based on tropical circulant matrices were proposed in the last two years. In this paper, we show that protocols offered by M. Durcheva [M. I. Durcheva. TrES: Tropical Encryption Scheme Based on Double Key Exchange. In: Eur. J. Inf. Tech. Comp. Sci. 2.4 (2022), pp. 11–17], by B. Amutha and R. Perumal [B. Amutha and R. Perumal. Public key exchange protocols based on tropical lower circulant and anti-circulant matrices. In: AIMS Math. 8.7 (2023), pp....

2023/1617 (PDF) Last updated: 2023-10-18
Designing Efficient and Flexible NTT Accelerators
Ahmet MALAL
Implementation

The Number Theoretic Transform (NTT) is a powerful mathematical tool with a wide range of applications in various fields, including signal processing, cryptography, and error correction codes. In recent years, there has been a growing interest in efficiently implementing the NTT on hardware platforms for lattice-based cryptography within the context of NIST's Post-Quantum Cryptography (PQC) competition. The implementation of NTT in cryptography stands as a pivotal advancement,...

2023/1536 (PDF) Last updated: 2023-10-07
Leaky McEliece: Secret Key Recovery From Highly Erroneous Side-Channel Information
Marcus Brinkmann, Chitchanok Chuengsatiansup, Alexander May, Julian Nowakowski, Yuval Yarom
Attacks and cryptanalysis

The McEliece cryptosystem is a strong contender for post-quantum schemes, including key encapsulation for confidentiality of key exchanges in network protocols. A McEliece secret key is a structured parity check matrix that is transformed via Gaussian elimination into an unstructured public key. We show that this transformation is a highly critical operation with respect to side-channel leakage. We assume leakage of the elementary row operations during Gaussian elimination, motivated by...

2023/1513 (PDF) Last updated: 2024-01-12
Making an Asymmetric PAKE Quantum-Annoying by Hiding Group Elements
Marcel Tiepelt, Edward Eaton, Douglas Stebila
Cryptographic protocols

The KHAPE-HMQV protocol is a state-of-the-art highly efficient asymmetric password-authenticated key exchange protocol that provides several desirable security properties, but has the drawback of being vulnerable to quantum adversaries due to its reliance on discrete logarithm-based building blocks: solving a single discrete logarithm allows the attacker to perform an offline dictionary attack and recover the password. We show how to modify KHAPE-HMQV to make the protocol quantum-annoying: a...

2023/1457 (PDF) Last updated: 2023-09-22
Provable Security Analysis of the Secure Remote Password Protocol
Dennis Dayanikli, Anja Lehmann
Cryptographic protocols

This paper analyses the Secure Remote Password Protocol (SRP) in the context of provable security. SRP is an asymmetric Password-Authenticated Key Exchange (aPAKE) protocol introduced in 1998. It allows a client to establish a shared cryptographic key with a server based on a password of potentially low entropy. Although the protocol was part of several standardization efforts, and is deployed in numerous commercial applications such as Apple Homekit, 1Password or Telegram, it still lacks a...

2023/1434 (PDF) Last updated: 2023-10-06
An Efficient Strong Asymmetric PAKE Compiler Instantiable from Group Actions
Ian McQuoid, Jiayu Xu
Cryptographic protocols

Password-authenticated key exchange (PAKE) is a class of protocols enabling two parties to convert a shared (possibly low-entropy) password into a high-entropy joint session key. Strong asymmetric PAKE (saPAKE), an extension that models the client-server setting where servers may store a client's password for repeated authentication, was the subject of standardization efforts by the IETF in 2019-20. In this work, we present the most computationally efficient saPAKE protocol so far: a...

2023/1418 (PDF) Last updated: 2023-09-20
Short Concurrent Covert Authenticated Key Exchange (Short cAKE)
Karim Eldafrawy, Nicholas Genise, Stanislaw Jarecki
Cryptographic protocols

Von Ahn, Hopper and Langford introduced the notion of steganographic a.k.a. covert computation, to capture distributed computation where the attackers must not be able to distinguish honest parties from entities emitting random bitstrings. This indistinguishability should hold for the duration of the computation except for what is revealed by the intended outputs of the computed functionality. An important case of covert computation is mutually authenticated key exchange, a.k.a. mutual...

2023/1415 (PDF) Last updated: 2023-11-15
Generalized Fuzzy Password-Authenticated Key Exchange from Error Correcting Codes
Jonathan Bootle, Sebastian Faller, Julia Hesse, Kristina Hostáková, Johannes Ottenhues
Cryptographic protocols

Fuzzy Password-Authenticated Key Exchange (fuzzy PAKE) allows cryptographic keys to be generated from authentication data that is both fuzzy and of low entropy. The strong protection against offline attacks offered by fuzzy PAKE opens an interesting avenue towards secure biometric authentication, typo-tolerant password authentication, and automated IoT device pairing. Previous constructions of fuzzy PAKE are either based on Error Correcting Codes (ECC) or generic multi-party computation...

2023/1401 (PDF) Last updated: 2023-09-18
On the Multi-User Security of LWE-based NIKE
Roman Langrehr
Public-key cryptography

Non-interactive key exchange (NIKE) schemes like the Diffie-Hellman key exchange are a widespread building block in several cryptographic protocols. Since the Diffie-Hellman key exchange is not post-quantum secure, it is important to investigate post-quantum alternatives. We analyze the security of the LWE-based NIKE by Ding et al. (ePrint 2012) and Peikert (PQCrypt 2014) in a multi-user setting where the same public key is used to generate shared keys with multiple other users. The...

2023/1380 (PDF) Last updated: 2023-09-14
Tighter Security for Generic Authenticated Key Exchange in the QROM
Jiaxin Pan, Benedikt Wagner, Runzhi Zeng
Public-key cryptography

We give a tighter security proof for authenticated key exchange (AKE) protocols that are generically constructed from key encapsulation mechanisms (KEMs) in the quantum random oracle model (QROM). Previous works (Hövelmanns et al., PKC 2020) gave reductions for such a KEM-based AKE protocol in the QROM to the underlying primitives with square-root loss and a security loss in the number of users and total sessions. Our proof is much tighter and does not have square-root loss. Namely, it only...

2023/1372 (PDF) Last updated: 2023-09-15
Cryptographic Key Exchange: An Innovation Outlook
Gideon Samid
Implementation

This article evaluates the innovation landscape facing the challenge of generating fresh shared randomness for cryptographic key exchange and various cyber security protocols. It discusses the main innovation thrust today, focused on quantum entanglement and on efficient engineering solutions to BB84, and its related alternatives. This innovation outlook highlights non-quantum solutions, and describes NEPSAR – a mechanical complexity based solution, which is applicable to any number of...

2023/1368 (PDF) Last updated: 2024-07-24
Towards post-quantum secure PAKE - A tight security proof for OCAKE in the BPR model
Nouri Alnahawi, Kathrin Hövelmanns, Andreas Hülsing, Silvia Ritsch, Alexander Wiesmaier
Cryptographic protocols

We revisit OCAKE (ACNS 23), a generic recipe that constructs password-based authenticated key exchange (PAKE) from key encapsulation mechanisms (KEMs), to allow instantiations with post-quantums KEM like KYBER. The ACNS23 paper left as an open problem to argue security against quantum attackers, with its security proof being in the universal composability (UC) framework. This is common for PAKE, however, at the time of this submission’s writing, it was not known how to prove (computational)...

2023/1349 (PDF) Last updated: 2023-09-10
Communication Lower Bounds of Key-Agreement Protocols via Density Increment Arguments
Mi-Ying (Miryam) Huang, Xinyu Mao, Guangxu Yang, Jiapeng Zhang
Foundations

Constructing key-agreement protocols in the random oracle model (ROM) is a viable method to assess the feasibility of developing public-key cryptography within Minicrypt. Unfortunately, as shown by Impagliazzo and Rudich (STOC 1989) and Barak and Mahmoody (Crypto 2009), such protocols can only guarantee limited security: any $\ell$-query protocol can be attacked by an $O(\ell^2)$-query adversary. This quadratic gap matches the key-agreement protocol proposed by Merkle (CACM 78), known as ...

2023/1339 (PDF) Last updated: 2023-12-30
FlexiRand: Output Private (Distributed) VRFs and Application to Blockchains
Aniket Kate, Easwar Vivek Mangipudi, Siva Mardana, Pratyay Mukherjee
Cryptographic protocols

Web3 applications based on blockchains regularly need access to randomness that is unbiased, unpredictable, and publicly verifiable. For Web3 gaming applications, this becomes a crucial selling point to attract more users by providing credibility to the "random reward" distribution feature. A verifiable random function (VRF) protocol satisfies these requirements naturally, and there is a tremendous rise in the use of VRF services. As most blockchains cannot maintain the secret keys required...

2023/1334 (PDF) Last updated: 2023-09-07
A Generic Construction of Tightly Secure Password-based Authenticated Key Exchange
Jiaxin Pan, Runzhi Zeng
Public-key cryptography

We propose a generic construction of password-based authenticated key exchange (PAKE) from key encapsulation mechanisms (KEM). Assuming that the KEM is oneway secure against plaintext-checkable attacks (OW-PCA), we prove that our PAKE protocol is \textit{tightly secure} in the Bellare-Pointcheval-Rogaway model (EUROCRYPT 2000). Our tight security proofs require ideal ciphers and random oracles. The OW-PCA security is relatively weak and can be implemented tightly with the Diffie-Hellman...

2023/1309 (PDF) Last updated: 2023-09-02
A Lattice-based Publish-Subscribe Communication Protocol using Accelerated Homomorphic Encryption Primitives
Anes Abdennebi, Erkay Savaş
Implementation

Key-policy attribute-based encryption scheme (KP-ABE) uses a set of attributes as public keys for encryption. It allows homomorphic evaluation of ciphertext into another ciphertext of the same message, which can be decrypted if a certain access policy based on the attributes is satisfied. A lattice-based KP-ABE scheme is reported in several works in the literature, and its software implementation is available in an open-source library called PALISADE. However, as the cryptographic primitives...

2023/1247 (PDF) Last updated: 2024-08-02
Representations of Group Actions and their Applications in Cryptography
Giuseppe D'Alconzo, Antonio J. Di Scala
Public-key cryptography

Cryptographic group actions provide a flexible framework that allows the instantiation of several primitives, ranging from key exchange protocols to PRFs and digital signatures. The security of such constructions is based on the intractability of some computational problems. For example, given the group action $(G,X,\star)$, the weak unpredictability assumption (Alamati et al., Asiacrypt 2020) requires that, given random $x_i$'s in $X$, no probabilistic polynomial time algorithm can compute,...

2023/1243 (PDF) Last updated: 2023-08-16
Multi-Stage Group Key Distribution and PAKEs: Securing Zoom Groups against Malicious Servers without New Security Elements
Cas Cremers, Eyal Ronen, Mang Zhao
Cryptographic protocols

Video conferencing apps like Zoom have hundreds of millions of daily users, making them a high-value target for surveillance and subversion. While such apps claim to achieve some forms of end-to-end encryption, they usually assume an incorruptible server that is able to identify and authenticate all the parties in a meeting. Concretely this means that, e.g., even when using the “end-to-end encrypted” setting, malicious Zoom servers could eavesdrop or impersonate in arbitrary groups. In...

2023/1214 (PDF) Last updated: 2023-08-10
Verifiable Verification in Cryptographic Protocols
Marc Fischlin, Felix Günther
Cryptographic protocols

Common verification steps in cryptographic protocols, such as signature or message authentication code checks or the validation of elliptic curve points, are crucial for the overall security of the protocol. Yet implementation errors omitting these steps easily remain unnoticed, as often the protocol will function perfectly anyways. One of the most prominent examples is Apple's goto fail bug where the erroneous certificate verification skipped over several of the required steps, marking...

2023/1145 (PDF) Last updated: 2023-07-24
New Random Oracle Instantiations from Extremely Lossy Functions
Chris Brzuska, Geoffroy Couteau, Christoph Egger, Pihla Karanko, Pierre Meyer
Foundations

We instantiate two random oracle (RO) transformations using Zhandry's extremely lossy function (ELF) technique (Crypto'16). Firstly, using ELFs and indistinguishabililty obfuscation (iO), we instantiate a modified version of the Fujisaki-Okamoto (FO) transform which upgrades a public-key encryption scheme (PKE) from indistinguishability under chosen plaintext attacks (IND-CPA) to indistinguishability under chosen ciphertext attacks (IND-CCA). We side-step a prior uninstantiability result...

2023/1065 (PDF) Last updated: 2023-07-08
A Note on ``A Lightweight and Privacy-Preserving Mutual Authentication and Key Agreement Protocol for Internet of Drones Environment''
Zhengjun Cao, Lihua Liu
Attacks and cryptanalysis

We show that the key agreement scheme [IEEE Internet Things J., 9(12), 2022, 9918--9933] is flawed. In order to authenticate each other, all participants use message authentication code (MAC) to generate tags for exchanged data. But MAC is a cryptographic technique which requires that the sender and receiver share a symmetric key. The scheme tries to establish a new shared key by using an old shared key, which results in a vicious circle. To the best of our knowledge, it is the first time...

2023/1054 (PDF) Last updated: 2024-07-05
Quantum Complexity for Discrete Logarithms and Related Problems
Minki Hhan, Takashi Yamakawa, Aaram Yun
Foundations

This paper studies the quantum computational complexity of the discrete logarithm (DL) and related group-theoretic problems in the context of ``generic algorithms''---that is, algorithms that do not exploit any properties of the group encoding. We establish the quantum generic group model and hybrid classical-quantum generic group model as quantum and hybrid analogs of their classical counterpart. This model counts the number of group operations of the underlying cyclic group $G$ as a...

2023/973 (PDF) Last updated: 2023-08-30
Demystifying Just-in-Time (JIT) Liquidity Attacks on Uniswap V3
Xihan Xiong, Zhipeng Wang, William Knottenbelt, Michael Huth
Applications

Uniswap is currently the most liquid Decentralized Exchange (DEX) on Ethereum. In May 2021, it upgraded to the third protocol version named Uniswap V3. The key feature update is “concentrated liquidity”, which supports liquidity provision within custom price ranges. However, this design introduces a new type of Miner Extractable Value (MEV) source called Just-in-Time (JIT) liquidity attack, where the adversary mints and burns a liquidity position right before and after a sizable swap. We...

2023/913 (PDF) Last updated: 2023-12-15
Hidden Stream Ciphers and TMTO Attacks on TLS 1.3, DTLS 1.3, QUIC, and Signal
John Preuß Mattsson
Cryptographic protocols

Transport Layer Security (TLS) 1.3 and the Signal protocol are very important and widely used security protocols. We show that the key update function in TLS 1.3 and the symmetric key ratchet in Signal can be modeled as non-additive synchronous stream ciphers. This means that the efficient Time Memory Tradeoff Attacks for stream ciphers can be applied. The implication is that TLS 1.3, QUIC, DTLS 1.3, and Signal offer a lower security level against TMTO attacks than expected from the key...

2023/854 (PDF) Last updated: 2024-02-21
On Optimal Tightness for Key Exchange with Full Forward Secrecy via Key Confirmation
Kai Gellert, Kristian Gjøsteen, Håkon Jacobsen, Tibor Jager
Public-key cryptography

A standard paradigm for building key exchange protocols with full forward secrecy (and explicit authentication) is to add key confirmation messages to an underlying protocol having only weak forward secrecy (and implicit authentication). Somewhat surprisingly, we show through an impossibility result that this simple trick must nevertheless incur a linear tightness loss in the number of parties for many natural protocols. This includes Krawczyk's HMQV protocol (CRYPTO 2005) and the protocol...

2023/843 (PDF) Last updated: 2023-06-07
Security Analysis of the WhatsApp End-to-End Encrypted Backup Protocol
Gareth T. Davies, Sebastian Faller, Kai Gellert, Tobias Handirk, Julia Hesse, Máté Horváth, Tibor Jager
Cryptographic protocols

WhatsApp is an end-to-end encrypted (E2EE) messaging service used by billions of people. In late 2021, WhatsApp rolled out a new protocol for backing up chat histories. The E2EE WhatsApp backup protocol (WBP) allows users to recover their chat history from passwords, leaving WhatsApp oblivious of the actual encryption keys. The WBP builds upon the OPAQUE framework for password-based key exchange, which is currently undergoing standardization. While considerable efforts have gone into the...

2023/832 (PDF) Last updated: 2023-06-05
Unstoppable Wallets: Chain-assisted Threshold ECDSA and its Applications
Guy Zyskind, Avishay Yanai, Alex "Sandy" Pentland
Cryptographic protocols

The security and usability of cryptocurrencies and other blockchain-based applications depend on the secure management of cryptographic keys. However, current approaches for managing these keys often rely on third parties, trusted to be available at a minimum, and even serve as custodians in some solutions, creating single points of failure and limiting the ability of users to fully control their own assets. In this work, we introduce the concept of unstoppable wallets, which are...

2023/823 (PDF) Last updated: 2023-06-07
Lattice-based Authenticated Key Exchange with Tight Security
Jiaxin Pan, Benedikt Wagner, Runzhi Zeng
Public-key cryptography

We construct the first tightly secure authenticated key exchange (AKE) protocol from lattices. Known tight constructions are all based on Diffie-Hellman-like assumptions. Thus, our protocol is the first construction with tight security from a post-quantum assumption. Our AKE protocol is constructed tightly from a new security notion for key encapsulation mechanisms (KEMs), called one-way security against checkable chosen-ciphertext attacks (OW- ChCCA). We show how an OW-ChCCA secure KEM...

2023/793 (PDF) Last updated: 2023-10-24
Optimizations and Practicality of High-Security CSIDH
Fabio Campos, Jorge Chavez-Saab, Jesús-Javier Chi-Domínguez, Michael Meyer, Krijn Reijnders, Francisco Rodríguez-Henríquez, Peter Schwabe, Thom Wiggers
Public-key cryptography

In this work, we assess the real-world practicality of CSIDH, an isogeny-based non-interactive key exchange. We provide the first thorough assessment of the practicality of CSIDH in higher parameter sizes for conservative estimates of quantum security, and with protection against physical attacks. This requires a three-fold analysis of CSIDH. First, we describe two approaches to efficient high-security CSIDH implementations, based on SQALE and CTIDH. Second, we optimize such high-security...

2023/791 (PDF) Last updated: 2023-10-12
New SIDH Countermeasures for a More Efficient Key Exchange
Andrea Basso, Tako Boris Fouotsa
Public-key cryptography

The Supersingular Isogeny Diffie-Hellman (SIDH) protocol has been the main and most efficient isogeny-based encryption protocol, until a series of breakthroughs led to a polynomial-time key-recovery attack. While some countermeasures have been proposed, the resulting schemes are significantly slower and larger than the original SIDH. In this work, we propose a new countermeasure technique that leads to significantly more efficient and compact protocols. To do so, we introduce the...

2023/781 (PDF) Last updated: 2023-11-15
$\mathsf{Skye}$: An Expanding PRF based Fast KDF and its Applications
Amit Singh Bhati, Antonin Dufka, Elena Andreeva, Arnab Roy, Bart Preneel
Secret-key cryptography

A Key Derivation Function (KDF) generates a uniform and highly random key-stream from weakly random key material. KDFs are broadly used in various security protocols such as digital signatures and key exchange protocols. HKDF, the most deployed KDF in practice, is based on the extract-then-expand paradigm. It is presently used, among others, in the Signal Protocol for end-to-end encrypted messaging. HKDF is a generic KDF for general input sources and thus is not optimized for...

2023/779 (PDF) Last updated: 2023-09-18
Hidden Stabilizers, the Isogeny To Endomorphism Ring Problem and the Cryptanalysis of pSIDH
Mingjie Chen, Muhammad Imran, Gábor Ivanyos, Péter Kutas, Antonin Leroux, Christophe Petit
Public-key cryptography

The Isogeny to Endomorphism Ring Problem (IsERP) asks to compute the endomorphism ring of the codomain of an isogeny between supersingular curves in characteristic $p$ given only a representation for this isogeny, i.e. some data and an algorithm to evaluate this isogeny on any torsion point. This problem plays a central role in isogeny-based cryptography; it underlies the security of pSIDH protocol (ASIACRYPT 2022) and it is at the heart of the recent attacks that broke the SIDH key...

2023/768 (PDF) Last updated: 2023-12-19
Owl: An Augmented Password-Authenticated Key Exchange Scheme
Feng Hao, Samiran Bag, Liqun Chen, Paul C. van Oorschot
Cryptographic protocols

We present Owl, an augmented password-authenticated key exchange (PAKE) protocol that is both efficient and supported by security proofs. Owl is motivated by recognized limitations in SRP-6a and OPAQUE. SRP-6a is the only augmented PAKE that has enjoyed wide use in practice to date, but it lacks the support of formal security proofs, and does not support elliptic curve settings. OPAQUE was proposed in 2018 as a provably secure and efficient alternative to SRP-6a, and was chosen by the IETF...

2023/749 (PDF) Last updated: 2023-05-24
Note on Subversion-Resilient Key Exchange
Magnus Ringerud
Cryptographic protocols

In this work, we set out to create a subversion resilient authenticated key exchange protocol. The first step was to design a meaningful security model for this primitive, and our goal was to avoid using building blocks like reverse firewalls and public watchdogs. We wanted to exclude these kinds of tools because we desired that our protocols to be self contained in the sense that we could prove security without relying on some outside, tamper-proof party. To define the model, we began by...

2023/714 (PDF) Last updated: 2023-07-21
A Two-Party Hierarchical Deterministic Wallets in Practice
ChihYun Chuang, IHung Hsu, TingFang Lee
Applications

The applications of Hierarchical Deterministic Wallet are rapidly growing in various areas such as cryptocurrency exchanges and hardware wallets. Improving privacy and security is more important than ever. In this study, we proposed a protocol that fully support a two-party computation of BIP32. Our protocol, similar to the distributed key generation, can generate each party’s secret share, the common chain-code, and the public key without revealing a seed and any descendant private keys. We...

2023/653 (PDF) Last updated: 2023-12-13
Muckle : End-to-End Hybrid Authenticated Key Exchanges
Sonja Bruckner, Sebastian Ramacher, Christoph Striecks
Cryptographic protocols

End-to-end authenticity in public networks plays a significant role. Namely, without authenticity, the adversary might be able to retrieve even confidential information straight away by impersonating others. Proposed solutions to establish an authenticated channel cover pre-shared key-based, password-based, and certificate-based techniques. To add confidentiality to an authenticated channel, authenticated key exchange (AKE) protocols usually have one of the three solutions built in. As an...

2023/651 (PDF) Last updated: 2023-09-01
Stealth Key Exchange and Confined Access to the Record Protocol Data in TLS 1.3
Marc Fischlin
Cryptographic protocols

We show how to embed a covert key exchange sub protocol within a regular TLS 1.3 execution, generating a stealth key in addition to the regular session keys. The idea, which has appeared in the literature before, is to use the exchanged nonces to transport another key value. Our contribution is to give a rigorous model and analysis of the security of such embedded key exchanges, requiring that the stealth key remains secure even if the regular key is under adversarial control. Specifically...

2023/639 (PDF) Last updated: 2024-02-14
OPRFs from Isogenies: Designs and Analysis
Lena Heimberger, Tobias Hennerbichler, Fredrik Meisingseth, Sebastian Ramacher, Christian Rechberger
Cryptographic protocols

Oblivious Pseudorandom Functions (OPRFs) are an elementary building block in cryptographic and privacy-preserving applications. However, while there are numerous pre-quantum secure OPRF constructions, few options exist in a post-quantum secure setting, and of those even fewer are practical for modern-day applications. In this work, we focus on isogeny group actions, as the associated low bandwidth leads to efficient constructions. Our results focus on the Naor-Reingold OPRF. We introduce...

2023/571 (PDF) Last updated: 2023-04-23
Fine-Grained Non-Interactive Key-Exchange: Constructions and Lower Bounds
Abtin Afshar, Geoffroy Couteau, Mohammad Mahmoody, Elahe Sadeghi
Cryptographic protocols

In this work, we initiate a study of $K$-NIKE protocols in the fine-grained setting, in which there is a polynomial gap between the running time of the honest parties and that of the adversary. Our goal is to show the possibility, or impossibility, of basing such protocols on weaker assumptions than those of $K$-NIKE for $K \geq 3$. Our contribution is threefold. - We show that random oracles can be used to obtain fine-grained $K$-NIKE protocols for every constant $K$. In particular,...

2023/507 (PDF) Last updated: 2023-04-07
Low Memory Attacks on Small Key CSIDH
Jesús-Javier Chi-Domínguez, Andre Esser, Sabrina Kunzweiler, Alexander May
Attacks and cryptanalysis

Despite recent breakthrough results in attacking SIDH, the CSIDH protocol remains a secure post-quantum key exchange protocol with appealing properties. However, for obtaining efficient CSIDH instantiations one has to resort to small secret keys. In this work, we provide novel methods to analyze small key CSIDH, thereby introducing the representation method ---that has been successfully applied for attacking small secret keys in code- and lattice-based schemes--- also to the isogeny-based...

2023/500 (PDF) Last updated: 2024-07-29
Robust Quantum Public-Key Encryption with Applications to Quantum Key Distribution
Giulio Malavolta, Michael Walter
Foundations

Quantum key distribution (QKD) allows Alice and Bob to agree on a shared secret key, while communicating over a public (untrusted) quantum channel. Compared to classical key exchange, it has two main advantages: (i) The key is unconditionally hidden to the eyes of any attacker, and (ii) its security assumes only the existence of authenticated classical channels which, in practice, can be realized using Minicrypt assumptions, such as the existence of digital signatures. On the flip side, QKD...

2023/473 (PDF) Last updated: 2023-04-24
Owl: Compositional Verification of Security Protocols via an Information-Flow Type System
Joshua Gancher, Sydney Gibson, Pratap Singh, Samvid Dharanikota, Bryan Parno
Cryptographic protocols

Computationally sound protocol verification tools promise to deliver full-strength cryptographic proofs for security protocols. Unfortunately, current tools lack either modularity or automation. We propose a new approach based on a novel use of information flow and refinement types for sound cryptographic proofs. Our framework, Owl, allows type-based modular descriptions of security protocols, wherein disjoint subprotocols can be programmed and automatically proved secure separately....

2023/470 (PDF) Last updated: 2024-01-22
GeT a CAKE: Generic Transformations from Key Encaspulation Mechanisms to Password Authenticated Key Exchanges
Hugo Beguinet, Céline Chevalier, David Pointcheval, Thomas Ricosset, Mélissa Rossi
Public-key cryptography

Password Authenticated Key Exchange (PAKE) have become a key building block in many security products as they provide interesting efficiency/security trade-offs. Indeed, a PAKE allows to dispense with the heavy public key infrastructures and its efficiency and portability make it well suited for applications such as Internet of Things or e-passports. With the emerging quantum threat and the effervescent development of post-quantum public key algorithms in the last five years, one would...

2023/469 (PDF) Last updated: 2023-03-31
Four Attacks and a Proof for Telegram
Martin R. Albrecht, Lenka Mareková, Kenneth G. Paterson, Igors Stepanovs
Cryptographic protocols

We study the use of symmetric cryptography in the MTProto 2.0 protocol, Telegram's equivalent of the TLS record protocol. We give positive and negative results. On the one hand, we formally and in detail model a slight variant of Telegram's "record protocol" and prove that it achieves security in a suitable bidirectional secure channel model, albeit under unstudied assumptions; this model itself advances the state-of-the-art for secure channels. On the other hand, we first motivate our...

2023/454 (PDF) Last updated: 2023-03-29
Wireless-channel Key Exchange
Afonso Arriaga, Petra Sala, Marjan Škrobot
Cryptographic protocols

Wireless-channel key exchange (WiKE) protocols that leverage Physical Layer Security (PLS) techniques could become an alternative solution for secure communication establishment, such as vehicular ad-hoc networks, wireless IoT networks, or cross-layer protocols. In this paper, we provide a novel abstraction of WiKE protocols and present the first game-based security model for WiKE. Our result enables the analysis of security guarantees offered by these cross-layer protocols and allows the...

2023/324 (PDF) Last updated: 2024-07-06
LATKE: A Framework for Constructing Identity-Binding PAKEs
Jonathan Katz, Michael Rosenberg
Cryptographic protocols

Motivated by applications to the internet of things (IoT), Cremers, Naor, Paz, and Ronen (CRYPTO '22) recently considered a setting in which multiple parties share a common password and want to be able to pairwise authenticate. They observed that using standard password-authenticated key exchange (PAKE) protocols in this setting allows for catastrophic impersonation attacks whereby compromise of a single party allows an attacker to impersonate any party to any other. To address this, they...

2023/295 (PDF) Last updated: 2023-02-28
Randomized Half-Ideal Cipher on Groups with applications to UC (a)PAKE
Bruno Freitas Dos Santos, Yanqi Gu, Stanislaw Jarecki
Cryptographic protocols

An Ideal Cipher (IC) is a cipher where each key defines a random permutation on the domain. Ideal Cipher on a group has many attractive applications, e.g., the Encrypted Key Exchange (EKE) protocol for Password Authenticated Key Exchange (PAKE) [10], or asymmetric PAKE (aPAKE) [40, 36]. However, known constructions for IC on a group domain all have drawbacks, including key leakage from timing information [15], requiring 4 hash-onto-group operations if IC is an 8-round Feistel [27], and...

2023/282 (PDF) Last updated: 2023-02-24
Quantum trapdoor functions from classical one-way functions
Andrea Coladangelo
Foundations

We introduce the notion of a quantum trapdoor function. This is an efficiently computable unitary that takes as input a "public" quantum state and a classical string $x$, and outputs a quantum state. This map is such that (i) it is hard to invert, in the sense that it is hard to recover $x$ given the output state (and many copies of the public state), and (ii) there is a classical trapdoor that allows efficient inversion. We show that a quantum trapdoor function can be constructed from any...

2023/271 (PDF) Last updated: 2024-07-22
Swoosh: Efficient Lattice-Based Non-Interactive Key Exchange
Phillip Gajland, Bor de Kock, Miguel Quaresma, Giulio Malavolta, Peter Schwabe
Public-key cryptography

The advent of quantum computers has sparked significant interest in post-quantum cryptographic schemes, as a replacement for currently used cryptographic primitives. In this context, lattice-based cryptography has emerged as the leading paradigm to build post-quantum cryptography. However, all existing viable replacements of the classical Diffie-Hellman key exchange require additional rounds of interactions, thus failing to achieve all the benefits of this protocol. Although earlier work has...

2023/232 (PDF) Last updated: 2024-07-15
Crypto Dark Matter on the Torus: Oblivious PRFs from shallow PRFs and FHE
Martin R. Albrecht, Alex Davidson, Amit Deo, Daniel Gardham
Cryptographic protocols

Partially Oblivious Pseudorandom Functions (POPRFs) are 2-party protocols that allow a client to learn pseudorandom function (PRF) evaluations on inputs of its choice from a server. The client submits two inputs, one public and one private. The security properties ensure that the server cannot learn the private input, and the client cannot learn more than one evaluation per POPRF query. POPRFs have many applications including password-based key exchange and privacy-preserving authentication...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.