Dates are inconsistent

Dates are inconsistent

124 results sorted by ID

2024/1408 (PDF) Last updated: 2024-09-09
Multiple-Tweak Differential Attack Against SCARF
Christina Boura, Shahram Rasoolzadeh, Dhiman Saha, Yosuke Todo
Secret-key cryptography

In this paper, we present the first third-party cryptanalysis of SCARF, a tweakable low-latency block cipher designed to thwart contention-based cache attacks through cache randomization. We focus on multiple-tweak differential attacks, exploiting biases across multiple tweaks. We establish a theoretical framework explaining biases for any number of rounds and verify this framework experimentally. Then, we use these properties to develop a key recovery attack on 7-round SCARF with a time...

2024/1270 (PDF) Last updated: 2024-08-11
Meet-in-the-Middle Attack on 4 4 Rounds of SCARF under Single-Tweak Setting
Siwei Chen, Kai Hu, Guozhen Liu, Zhongfeng Niu, Quan Quan Tan, Shichang Wang
Attacks and cryptanalysis

\scarf, an ultra low-latency tweakable block cipher, is the first cipher designed for cache randomization. The block cipher design is significantly different from the other common tweakable block ciphers; with a block size of only 10 bits, and yet the input key size is a whopping $240$ bits. Notably, the majority of the round key in its round function is absorbed into the data path through AND operations, rather than the typical XOR operations. In this paper, we present a key-recovery...

2024/1187 (PDF) Last updated: 2024-07-23
STORM — Small Table Oriented Redundancy-based SCA Mitigation for AES
Yaacov Belenky, Hennadii Chernyshchyk, Oleg Karavaev, Oleh Maksymenko, Valery Teper, Daria Ryzhkova, Itamar Levi, Osnat Keren, Yury Kreimer
Attacks and cryptanalysis

Side-channel-analysis (SCA) resistance with cost optimization in AES hardware implementations remains a significant challenge. While traditional masking-based schemes offer provable security, they often incur substantial resource overheads (latency, area, randomness, performance, power consumption). Alternatively, the RAMBAM scheme introduced a redundancy-based approach to control the signal-to-noise ratio, and achieves exponential leakage reduction as redundancy increases. This method...

2024/1164 (PDF) Last updated: 2024-10-03
A Crack in the Firmament: Restoring Soundness of the Orion Proof System and More
Thomas den Hollander, Daniel Slamanig
Cryptographic protocols

Orion (Xie et al. CRYPTO'22) is a recent plausibly post-quantum zero-knowledge argument system with a linear time prover. It improves over Brakedown (Golovnev et al. ePrint'21 and CRYPTO'23) by reducing the proof size and verifier complexity to be polylogarithmic and additionally adds the zero-knowledge property. The argument system is demonstrated to be concretely efficient with a prover time being the fastest among all existing succinct proof systems and a proof size that is an order of...

2024/1162 (PDF) Last updated: 2024-07-17
Practical Traceable Receipt-Free Encryption
Henri Devillez, Olivier Pereira, Thomas Peters
Public-key cryptography

Traceable Receipt-free Encryption (TREnc) is a verifiable public-key encryption primitive introduced at Asiacrypt 2022. A TREnc allows randomizing ciphertexts in transit in order to remove any subliminal information up to a public trace that ensures the non-malleability of the underlying plaintext. A remarkable property of TREnc is the indistinguishability of the randomization of chosen ciphertexts against traceable chosen-ciphertext attacks (TCCA). This property can support applications...

2024/1085 (PDF) Last updated: 2024-10-06
Randomized Distributed Function Computation with Semantic Communications: Applications to Privacy
Onur Gunlu
Foundations

Randomized distributed function computation refers to remote function computation where transmitters send data to receivers which compute function outputs that are randomized functions of the inputs. We study the applications of semantic communications in randomized distributed function computation to illustrate significant reductions in the communication load, with a particular focus on privacy. The semantic communication framework leverages generalized remote source coding methods, where...

2024/1037 (PDF) Last updated: 2024-10-05
A note on adding zero-knowledge to STARKs
Ulrich Haböck, Al Kindi
Cryptographic protocols

We discuss zero-knowledge in the context of FRI-based STARKs using techniques desirable in practice: Randomization by polynomials over the basefield, and decomposing the overall quotient into polynomials of smaller degree.

2024/1019 (PDF) Last updated: 2024-06-24
Exploiting Clock-Slew Dependent Variability in CMOS Digital Circuits Towards Power and EM SCA Resilience
Archisman Ghosh, Md. Abdur Rahman, Debayan Das, Santosh Ghosh, Shreyas Sen
Applications

Mathematically secured cryptographic implementations leak critical information in terms of power, EM emanations, etc. Several circuit-level countermeasures are proposed to hinder side channel leakage at the source. Circuit-level countermeasures (e.g., IVR, STELLAR, WDDL, etc) are often preferred as they are generic and have low overhead. They either dither the voltage randomly or attenuate the meaningful signature at $V_{DD}$ port. Although any digital implementation has two generic ports,...

2024/967 (PDF) Last updated: 2024-07-08
Consolidated Linear Masking (CLM): Generalized Randomized Isomorphic Representations, Powerful Degrees of Freedom and Low(er)-cost
Itamar Levi, Osnat Keren
Implementation

Masking is a widely adopted countermeasure against side-channel analysis (SCA) that protects cryptographic implementations from information leakage. However, current masking schemes often incur significant overhead in terms of electronic cost. RAMBAM, a recently proposed masking technique that fits elegantly with the AES algorithm, offers ultra-low latency/area by utilizing redundant representations of finite field elements. This paper presents a comprehensive generalization of RAMBAM and...

2024/791 (PDF) Last updated: 2024-06-28
Minimize the Randomness in Rasta-Like Designs: How Far Can We Go?
Lorenzo Grassi, Fukang Liu, Christian Rechberger, Fabian Schmid, Roman Walch, Qingju Wang
Secret-key cryptography

The Rasta design strategy allows building low-round ciphers due to its efficient prevention of statistical attacks and algebraic attacks by randomizing the cipher, which makes it especially suitable for hybrid homomorphic encryption (HHE), also known as transciphering. Such randomization is obtained by pseudorandomly sampling new invertible matrices for each round of each new cipher evaluation. However, naively sampling a random invertible matrix for each round significantly impacts the...

2024/436 (PDF) Last updated: 2024-03-13
Re-Randomized FROST
Conrado P. L. Gouvea, Chelsea Komlo

We define a (small) augmentation to the FROST threshold signature scheme that additionally allows for re-randomizable public and secret keys. We build upon the notion of re-randomizable keys in the literature, but tailor this capability when the signing key is secret-shared among a set of mutually trusted parties. We do not make any changes to the plain FROST protocol, but instead define additional algorithms to allow for randomization of the threshold public key and participant’s individual...

2024/308 (PDF) Last updated: 2024-09-20
C'est très CHIC: A compact password-authenticated key exchange from lattice-based KEM
Afonso Arriaga, Manuel Barbosa, Stanislaw Jarecki, Marjan Skrobot
Cryptographic protocols

Driven by the NIST's post-quantum standardization efforts and the selection of Kyber as a lattice-based Key-Encapsulation Mechanism (KEM), several Password Authenticated Key Exchange (PAKE) protocols have been recently proposed that leverage a KEM to create an efficient, easy-to-implement and secure PAKE. In two recent works, Beguinet et al. (ACNS 2023) and Pan and Zeng (ASIACRYPT 2023) proposed generic compilers that transform KEM into PAKE, relying on an Ideal Cipher (IC) defined over a...

2024/293 (PDF) Last updated: 2024-02-21
Registered Attribute-Based Signature
Yijian Zhang, Jun Zhao, Ziqi Zhu, Junqing Gong, Jie Chen
Public-key cryptography

This paper introduces the notion of registered attribute-based signature (registered ABS). Distinctly different from classical attribute-based signature (ABS), registered ABS allows any user to generate their own public/secret key pair and register it with the system. The key curator is critical to keep the system flowing, which is a fully transparent entity that does not retain secrets. Our results can be summarized as follows. -This paper provides the first definition of registered...

2023/1735 (PDF) Last updated: 2023-11-09
Exploiting the Symmetry of $\mathbb{Z}^n$: Randomization and the Automorphism Problem
Kaijie Jiang, Anyu Wang, Hengyi Luo, Guoxiao Liu, Yang Yu, Xiaoyun Wang
Foundations

$\mathbb{Z}^n$ is one of the simplest types of lattices, but the computational problems on its rotations, such as $\mathbb{Z}$SVP and $\mathbb{Z}$LIP, have been of great interest in cryptography. Recent advances have been made in building cryptographic primitives based on these problems, as well as in developing new algorithms for solving them. However, the theoretical complexity of $\mathbb{Z}$SVP and $\mathbb{Z}$LIP are still not well understood. In this work, we study the problems on...

2023/1625 (PDF) Last updated: 2023-10-20
SPA-GPT: General Pulse Tailor for Simple Power Analysis Based on Reinforcement Learning
Ziyu Wang, Yaoling Ding, An Wang, Yuwei Zhang, Congming Wei, Shaofei Sun, Liehuang Zhu
Attacks and cryptanalysis

Power analysis of public-key algorithms is a well-known approach in the community of side-channel analysis. We usually classify operations based on the differences in power traces produced by different basic operations (such as modular exponentiation) to recover secret information like private keys. The more accurate the segmentation of power traces, the higher the efficiency of their classification. There exist two commonly used methods: one is equidistant segmentation, which requires a...

2023/1524 (PDF) Last updated: 2023-10-06
SoK: Signatures With Randomizable Keys
Sofía Celi, Scott Griffy, Lucjan Hanzlik, Octavio Perez Kempner, Daniel Slamanig
Public-key cryptography

Digital signature schemes with specific properties have recently seen various real-world applications with a strong emphasis on privacy-enhancing technologies. They have been extensively used to develop anonymous credentials schemes and to achieve an even more comprehensive range of functionalities in the decentralized web. Substantial work has been done to formalize different types of signatures where an allowable set of transformations can be applied to message-signature pairs to obtain...

2023/1316 (PDF) Last updated: 2023-09-04
Communication Lower Bounds for Cryptographic Broadcast Protocols
Erica Blum, Elette Boyle, Ran Cohen, Chen-Da Liu-Zhang
Cryptographic protocols

Broadcast protocols enable a set of $n$ parties to agree on the input of a designated sender, even facing attacks by malicious parties. In the honest-majority setting, a fruitful line of work harnessed randomization and cryptography to achieve low-communication broadcast protocols with sub-quadratic total communication and with "balanced" sub-linear communication cost per party. However, comparatively little is known in the dishonest-majority setting. Here, the most...

2023/1016 (PDF) Last updated: 2023-06-30
Aggregate Signatures with Versatile Randomization and Issuer-Hiding Multi-Authority Anonymous Credentials
Omid Mir, Balthazar Bauer, Scott Griffy, Anna Lysyanskaya, Daniel Slamanig
Cryptographic protocols

Anonymous credentials (AC) have emerged as a promising privacy-preserving solu- tion for user-centric identity management. They allow users to authenticate in an anonymous and unlinkable way such that only required information (i.e., attributes) from their credentials are re- vealed. With the increasing push towards decentralized systems and identity, e.g., self-sovereign identity (SSI) and the concept of verifiable credentials, this also necessitates the need for suit- able AC systems. For...

2023/1003 (PDF) Last updated: 2023-12-22
Concurrent Asynchronous Byzantine Agreement in Expected-Constant Rounds, Revisited
Ran Cohen, Pouyan Forghani, Juan Garay, Rutvik Patel, Vassilis Zikas
Cryptographic protocols

It is well known that without randomization, Byzantine agreement (BA) requires a linear number of rounds in the synchronous setting, while it is flat out impossible in the asynchronous setting. The primitive which allows to bypass the above limitation is known as oblivious common coin (OCC). It allows parties to agree with constant probability on a random coin, where agreement is oblivious, i.e., players are not aware whether or not agreement has been achieved. The starting point of our...

2023/498 (PDF) Last updated: 2024-01-11
Subset-optimized BLS Multi-signature with Key Aggregation
Foteini Baldimtsi, Konstantinos Kryptos Chalkias, Francois Garillot, Jonas Lindstrom, Ben Riva, Arnab Roy, Mahdi Sedaghat, Alberto Sonnino, Pun Waiwitlikhit, Joy Wang
Public-key cryptography

We propose a variant of the original Boneh, Drijvers, and Neven (Asiacrypt '18) BLS multi-signature aggregation scheme best suited to applications where the full set of potential signers is fixed and known and any subset $I$ of this group can create a multi-signature over a message $m$. This setup is very common in proof-of-stake blockchains where a $2f 1$ majority of $3f$ validators sign transactions and/or blocks and is secure against $\textit{rogue-key}$ attacks without requiring a proof...

2023/380 (PDF) Last updated: 2023-03-15
Security Analysis of Signature Schemes with Key Blinding
Edward Eaton, Tancrède Lepoint, Christopher A. Wood
Cryptographic protocols

Digital signatures are fundamental components of public key cryptography. They allow a signer to generate verifiable and unforgeable proofs---signatures---over arbitrary messages with a private key, and allow recipients to verify the proofs against the corresponding and expected public key. These properties are used in practice for a variety of use cases, ranging from identity or data authenticity to non-repudiation. Unsurprisingly, signature schemes are widely used in security protocols...

2023/192 (PDF) Last updated: 2023-08-07
Faithful Simulation of Randomized BFT Protocols on Block DAGs
Hagit Attiya, Constantin Enea, Shafik Nassar
Applications

Byzantine Fault-Tolerant (BFT) protocols that are based on Directed Acyclic Graphs (DAGs) are attractive due to their many advantages in asynchronous blockchain systems. These DAG-based protocols can be viewed as a simulation of some BFT protocol on a DAG. Many DAG-based BFT protocols rely on randomization, since they are used for agreement and ordering of transactions, which cannot be achieved deterministically in asynchronous systems. Randomization is achieved either through local sources...

2023/085 (PDF) Last updated: 2023-01-24
The Security of ChaCha20-Poly1305 in the Multi-user Setting
Jean Paul Degabriele, Jérôme Govinden, Felix Günther, Kenneth G. Paterson
Secret-key cryptography

The ChaCha20-Poly1305 AEAD scheme is being increasingly widely deployed in practice. Practitioners need proven security bounds in order to set data limits and rekeying intervals for the scheme. But the formal security analysis of ChaCha20-Poly1305 currently lags behind that of AES-GCM. The only extant analysis (Procter, 2014) contains a flaw and is only for the single-user setting. We rectify this situation. We prove a multi-user security bound on the AEAD security of ChaCha20-Poly1305 and...

2022/1690 (PDF) Last updated: 2024-06-05
LUNA: Quasi-Optimally Succinct Designated-Verifier Zero-Knowledge Arguments from Lattices
Ron Steinfeld, Amin Sakzad, Muhammed F. Esgin, Veronika Kuchta, Mert Yassi, Raymond K. Zhao
Cryptographic protocols

We introduce the first candidate Lattice-based designated verifier (DV) zero knowledge sUccinct Non-interactive Argument (ZK-SNARG) protocol, LUNA, with quasi-optimal proof length (quasi-linear in the security/privacy parameter). By simply relying on mildly stronger security assumptions, LUNA is also a candidate ZK-SNARK (i.e. argument of knowledge). LUNA achieves significant improvements in concrete proof sizes, reaching below 6 KB (compared to >32 KB in prior work) for 128-bit...

2022/1438 (PDF) Last updated: 2024-03-12
Plug-and-play sanitization for TFHE
Florian Bourse, Malika Izabachène
Public-key cryptography

Fully Homomorphic encryption allows the evaluation of any circuits over encrypted data while preserving the privacy of the data. However, without any additional properties, no guarantee is provided for the privacy of the circuits which are evaluated. A sanitization algorithm allows to destroy all previous information about how a ciphertext was obtained, ensuring that the circuit which was evaluated remains secret. In this paper, we present two techniques to randomize RLWE ciphertexts, and...

2022/1416 (PDF) Last updated: 2022-10-26
Side-Channel Attack Countermeasures Based On Clock Randomization Have a Fundamental Flaw
Martin Brisfors, Michail Moraitis, Elena Dubrova
Implementation

Clock randomization is one of the oldest countermeasures against side-channel attacks. Various implementations have been presented in the past, along with positive security evaluations. However, in this paper we show that it is possible to break countermeasures based on a randomized clock by sampling side-channel measurements at a frequency much higher than the encryption clock, synchronizing the traces with pre-processing, and targeting the beginning of the encryption. We demonstrate a...

2022/1228 (PDF) Last updated: 2023-05-15
SCARF: A Low-Latency Block Cipher for Secure Cache-Randomization
Federico Canale, Tim Güneysu, Gregor Leander, Jan Philipp Thoma, Yosuke Todo, Rei Ueno

Randomized cache architectures have proven to significantly increase the complexity of contention-based cache side channel attacks and therefore pre\-sent an important building block for side channel secure microarchitectures. By randomizing the address-to-cache-index mapping, attackers can no longer trivially construct minimal eviction sets which are fundamental for contention-based cache attacks. At the same time, randomized caches maintain the flexibility of traditional...

2022/1129 Last updated: 2022-11-13
Breaking KASLR on Mobile Devices without Any Use of Cache Memory
Milad Seddigh, Mahdi Esfahani, Sarani Bhattacharya, Mohammad Reza Aref, Hadi Soleimany

Microarchitectural attacks utilize the performance optimization constructs that have been studied over decades in computer architecture research and show the vulnerability of such optimizations in a realistic framework. One such highly performance driven vulnerable construct is speculative execution. In this paper, we focus on the problem of breaking the kernel address-space layout randomization (KASLR) on modern mobile devices without using cache memory as a medium of observation. However,...

2022/873 (PDF) Last updated: 2023-03-23
\(\texttt{POLKA}\): Towards Leakage-Resistant Post-Quantum CCA-Secure Public Key Encryption
Clément Hoffmann, Benoît Libert, Charles Momin, Thomas Peters, François-Xavier Standaert
Public-key cryptography

As for any cryptographic algorithm, the deployment of post-quantum CCA-secure public-key encryption schemes may come with the need to be protected against side-channel attacks. For existing post-quantum schemes that have not been developed with leakage in mind, recent results showed that the cost of these protections can make their implementations more expensive by orders of magnitude. In this paper, we describe a new design, coined \(\texttt{POLKA}\), that is specifically tailored for this...

2022/440 (PDF) Last updated: 2022-09-16
A Security Model for Randomization-based Protected Caches
Jordi Ribes-González, Oriol Farràs, Carles Hernández, Vatistas Kostalabros, Miquel Moretó
Applications

Cache side-channel attacks allow adversaries to learn sensitive information about co-running processes by using only access latency measures and cache contention. This vulnerability has been shown to lead to several microarchitectural attacks. As a promising solution, recent work proposes Randomization-based Protected Caches (RPCs). RPCs randomize cache addresses, changing keys periodically so as to avoid long-term leakage. Unfortunately, recent attacks have called the security of...

2022/422 (PDF) Last updated: 2023-10-16
Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-Based Assumptions
Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, Tjerand Silde
Cryptographic protocols

Cryptographic voting protocols have recently seen much interest from practitioners due to their (planned) use in countries such as Estonia, Switzerland, France, and Australia. Practical protocols usually rely on tested designs such as the mixing-and-decryption paradigm. There, multiple servers verifiably shuffle encrypted ballots, which are then decrypted in a distributed manner. While several efficient protocols implementing this paradigm exist from discrete log-type assumptions, the...

2022/371 (PDF) Last updated: 2022-03-22
A High-performance ECC Processor over Curve448 based on a Novel Variant of the Karatsuba Formula for Asymmetric Digit Multiplier
Asep Muhamad Awaludin, Jonguk Park, Rini Wisnu Wardhani, Howon Kim
Implementation

In this paper, we present a high-performance architecture for elliptic curve cryptography (ECC) over Curve448, which to the best of our knowledge, is the fastest implementation of ECC point multiplication over Curve448 to date. Firstly, we introduce a novel variant of the Karatsuba formula for asymmetric digit multiplier, suitable for typical DSP primitive with asymmetric input. It reduces the number of required DSPs compared to previous work and preserves the performance via full...

2022/096 (PDF) Last updated: 2022-01-31
On Regenerating Codes and Proactive Secret Sharing: Relationships and Implications
Karim Eldefrawy, Nicholas Genise, Rutuja Kshirsagar, Moti Yung
Foundations

We look at two basic coding theoretic and cryptographic mechanisms developed separately and investigate relationships between them and their implications. The first mechanism is Proactive Secret Sharing (PSS), which allows randomization and repair of shares using information from other shares. PSS enables constructing secure multi-party computation protocols that can withstand mobile dynamic attacks. This self-recovery and the redundancy of uncorrupted shares allows a system to overcome...

2022/054 (PDF) Last updated: 2022-01-18
SIKE Channels
Luca De Feo, Nadia El Mrabet, Aymeric Genêt, Novak Kaluđerović, Natacha Linard de Guertechin, Simon Pontié, Élise Tasso
Public-key cryptography

We present new side-channel attacks on SIKE, the isogeny-based candidate in the NIST PQC competition. Previous works had shown that SIKE is vulnerable to differential power analysis and pointed to coordinate randomization as an effective countermeasure. We show that coordinate randomization alone is not sufficient, as SIKE is vulnerable to a class of attacks similar to refined power analysis in elliptic curve cryptography, named zero-value attacks. We describe and confirm in the lab two such...

2021/1684 (PDF) Last updated: 2022-06-08
Cryptanalysis of Candidate Obfuscators for Affine Determinant Programs
Li Yao, Yilei Chen, Yu Yu
Foundations

At ITCS 2020, Bartusek et al. proposed a candidate indistinguishability obfuscator (iO) for affine determinant programs (ADPs). The candidate is special since it directly applies specific randomization techniques to the underlying ADP, without relying on the hardness of traditional cryptographic assumptions like discrete-log or learning with errors. It is relatively efficient compared to the rest of the iO candidates. However, the obfuscation scheme requires further cryptanalysis since it...

2021/1680 (PDF) Last updated: 2022-06-06
Improved Constructions of Anonymous Credentials From Structure-Preserving Signatures on Equivalence Classes
Aisling Connolly, Pascal Lafourcade, Octavio Perez Kempner
Public-key cryptography

Anonymous attribute-based credentials (ABCs) are a powerful tool allowing users to authenticate while maintaining privacy. When instantiated from structure-preserving signatures on equivalence classes (SPS-EQ) we obtain a controlled form of malleability, and hence increased functionality and privacy for the user. Existing constructions consider equivalence classes on the message space, allowing the joint randomization of credentials and the corresponding signatures on them. In this work,...

2021/1667 (PDF) Last updated: 2021-12-20
Using data compression and randomization to build an unconditionally secure short key cipher
Boris Ryabko
Secret-key cryptography

We consider the problem of constructing an unconditionally secure cipher for the case when the key length is less than the length of the encrypted message. (Unconditional security means that a computationally unbounded adversary cannot obtain information about the encrypted message without the key.) In this article, we propose data compression and randomization techniques combined with entropically-secure encryption. The resulting cipher can be used for encryption in such a way that the...

2021/1622 (PDF) Last updated: 2022-08-08
Roulette: A Diverse Family of Feasible Fault Attacks on Masked Kyber
Jeroen Delvaux
Implementation

At Indocrypt 2021, Hermelink, Pessl, and Pöppelmann presented a fault attack against Kyber in which a system of linear inequalities over the private key is generated and solved. The attack requires a laser and is, understandably, demonstrated with simulations—not actual equipment. We facilitate and diversify the attack in four ways, thereby admitting cheaper and more forgiving fault-injection setups. Firstly, the attack surface is enlarged: originally, the two input operands of the...

2021/1597 (PDF) Last updated: 2024-08-15
Cryptographic Analysis of the Bluetooth Secure Connection Protocol Suite
Marc Fischlin, Olga Sanina
Cryptographic protocols

We give a cryptographic analysis of the Bluetooth Secure Connections Protocol Suite. Bluetooth supports several subprotocols, such as Numeric Comparison, Passkey Entry, and Just Works, in order to match the devices' different input/output capabilities. Previous analyses (e.g., Lindell, CT-RSA'09, or Troncoso and Hale, NDSS'21) often considered (and confirmed) the security of single subprotocols only. Recent practically verified attacks, however, such as the Method Confusion Attack (von...

2021/1307 (PDF) Last updated: 2021-09-28
In-depth Analysis of Side-Channel Countermeasures for CRYSTALS-Kyber Message Encoding on ARM Cortex-M4
Hauke Malte Steffen, Lucie Johanna Kogelheide, Timo Bartkewitz
Public-key cryptography

A variety of post-quantum cryptographic schemes are currently undergoing standardization in the National Institute of Standards and Technology's post-quantum cryptography standardization process. It is well known from classical cryptography that actual implementations of cryptographic schemes can be attacked by exploiting side-channels, e.g. timing behavior, power consumption or emanation in the electromagnetic field. Although several of the reference implementations currently in the third...

2021/830 (PDF) Last updated: 2021-06-21
Analysis and Protection of the Two-metric Helper Data Scheme
Lars Tebelmann, Ulrich Kühne, Jean-Luc Danger, Michael Pehl

To compensate for the poor reliability of Physical Unclonable Function (PUF) primitives, some low complexity solutions not requiring error-correcting codes (ECC) have been proposed. One simple method is to discard less reliable bits, which are indicated in the helper data stored inside the PUF. To avoid discarding bits, the Two-metric Helper Data (TMH) method, which particularly applies to oscillation-based PUFs, allows to keep all bits by using different metrics when deriving the PUF...

2021/588 (PDF) Last updated: 2021-05-10
A Novel Proof of Shuffle: Exponentially Secure Cut-and-Choose
Thomas Haines, Johannes Mueller
Cryptographic protocols

Shuffling is one of the most important techniques for privacy-preserving protocols. Its applications are manifold, including, for example, e-voting, anonymous broadcast, or privacy-preserving machine-learning. For many applications, such as secure e-voting, it is crucial that the correctness of the shuffling operation be (publicly) verifiable. To this end, numerous proofs of shuffle have been proposed in the literature. Several of these proofs are actually employed in the real world. In...

2021/494 (PDF) Last updated: 2021-04-19
Key-Oblivious Encryption from isogenies and its application to Accountable Tracing Signatures.
Surbhi Shaw, Ratna Dutta
Cryptographic protocols

Key-oblivious encryption (KOE) is a newly developed cryptographic primitive that randomizes the public keys of an encryption scheme in an oblivious manner. It has applications in designing accountable tracing signature (ATS) that facilitates the group manager to revoke the anonymity of traceable users in a group signature while preserving the anonymity of non-traceable users. Despite of its importance and strong application, KOE has not received much attention in the literature. In this...

2021/101 (PDF) Last updated: 2021-02-25
Combined Fault and DPA Protection for Lattice-Based Cryptography
Daniel Heinz, Thomas Pöppelmann
Public-key cryptography

The progress on constructing quantum computers and the ongoing standardization of post-quantum cryptography (PQC) have led to the development and refinement of promising new digital signature schemes and key encapsulation mechanisms (KEM). Especially lattice-based schemes have gained some popularity in the research community, presumably due to acceptable key, ciphertext, and signature sizes as well as good performance results and cryptographic strength. However, in some practical...

2020/1368 (PDF) Last updated: 2020-11-02
On the Worst-Case Side-Channel Security of ECC Point Randomization in Embedded Devices
Melissa Azouaoui, François Durvaux, Romain Poussier, François-Xavier Standaert, Kostas Papagiannopoulos, Vincent Verneuil
Implementation

Point randomization is an important countermeasure to protect Elliptic Curve Cryptography (ECC) implementations against side-channel attacks. In this paper, we revisit its worst-case security in front of advanced side-channel adversaries taking advantage of analytical techniques in order to exploit all the leakage samples of an implementation. Our main contributions in this respect are the following: first, we show that due to the nature of the attacks against the point randomization (which...

2020/891 (PDF) Last updated: 2020-10-16
Keep it Unsupervised: Horizontal Attacks Meet Deep Learning
Guilherme Perin, Lukasz Chmielewski, Lejla Batina, Stjepan Picek
Applications

To mitigate side-channel attacks, real-world implementations of public-key cryptosystems adopt state-of-the-art countermeasures based on randomization of the private or ephemeral keys. Usually, for each private key operation, a "scalar blinding" is performed using 32 or 64 randomly generated bits. Nevertheless, horizontal attacks based on a single trace still pose serious threats to protected ECC or RSA implementations. If the secrets learned through a single-trace attack contain too many...

2020/874 (PDF) Last updated: 2020-07-12
New Methods and Abstractions for RSA-Based Forward Secure Signatures
Susan Hohenberger, Brent Waters
Public-key cryptography

We put forward a new abstraction for achieving forward-secure signatures that are (1) short, (2) have fast update and signing and (3) have small private key size. Prior work that achieved these parameters was pioneered by the pebbling techniques of Itkis and Reyzin (CRYPTO 2001) which showed a process for generating a sequence of roots $h^{1/e_1}, h^{1/e_2}, \dots, h^{1/e_T}$ for a group element $h$ in $\mathbb{Z}_N^*$. However, the current state of the art has limitations. First, while...

2020/811 (PDF) Last updated: 2020-10-06
Another Look at Extraction and Randomization of Groth's zk-SNARK
Karim Baghery, Markulf Kohlweiss, Janno Siim, Mikhail Volkhov
Cryptographic protocols

Due to the simplicity and performance of zk-SNARKs they are widely used in real-world cryptographic protocols, including blockchain and smart contract systems. Simulation Extractability (SE) is a necessary security property for a NIZK argument to achieve Universal Composability (UC), a common requirement for such protocols. Most of the works that investigated SE focus on its strong variant which implies proof non-malleability. In this work we investigate a relaxed weaker notion, that allows...

2020/524 (PDF) Last updated: 2020-05-06
Efficient Signatures on Randomizable Ciphertexts
Balthazar Bauer, Georg Fuchsbauer
Public-key cryptography

Randomizable encryption lets anyone randomize a ciphertext so it is distributed like a fresh encryption of the same plaintext. Signatures on randomizable ciphertexts (SoRC), introduced by Blazy et al. (PKC'11), let one adapt a signature on a ciphertext to a randomization of the latter. Since signatures can only be adapted to ciphertexts that encrypt the same message as the signed ciphertext, signatures obliviously authenticate plaintexts. SoRC have been used as a building block in...

2020/125 (PDF) Last updated: 2020-04-06
Oblivious Parallel Tight Compaction
Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Enoch Peserico, Elaine Shi
Cryptographic protocols

In tight compaction, one is given an array of balls some of which are marked 0 and the rest are marked 1. The output of the procedure is an array that contains all of the original balls except that now the 0-balls appear before the 1-balls. In other words, tight compaction is equivalent to sorting the array according to 1-bit keys (not necessarily maintaining order within same-key balls). Tight compaction is not only an important algorithmic task by itself, but its oblivious version has...

2019/1346 (PDF) Last updated: 2019-11-22
Privacy-Preserving Decentralised Singular Value Decomposition
Bowen Liu, Qiang Tang
Cryptographic protocols

With the proliferation of data and emerging data-driven applications, how to perform data analytical operations while respecting privacy concerns has become a very interesting research topic. With the advancement of communication and computing technologies, e.g. the FoG computing concept and its associated Edge computing technologies, it is now appealing to deploy decentralized data-driven applications. Following this trend, in this paper, we investigate privacy-preserving singular value...

2019/1089 (PDF) Last updated: 2019-12-07
Lattice-Face Key Infrastructure (LFKI) for Quantum Resistant Computing
Josiah Johnson Umezurike
Cryptographic protocols

A new light is shown by exploring a hybrid system designed to exhibit symmetric and asymmetric properties. LFKI is code named, end-to-end cryptographic system for cloud, mobile, internet of things (IOT) and devices (ECSMID). Until now, there had not been much done on lattice faces as a hybrid cryptographic solution. Here in, we do not owe respect to only randomization reduction or deterministic reduction. We embrace a collective approach to defining the old age question of what problem is...

2019/1026 Last updated: 2024-07-31
Efficient Tightly-Secure Structure-Preserving Signatures and Unbounded Simulation-Sound QA-NIZK Proofs
Mojtaba Khalili, Daniel Slamanig
Public-key cryptography

We show how to construct structure-preserving signatures (SPS) and unbounded quasi-adaptive non-interactive zero-knowledge (USS QA-NIZK) proofs with a tight security reduction to simple assumptions, being the first with a security loss of $\mathcal{O}(1)$. Specifically, we present a SPS scheme which is more efficient than existing tightly secure SPS schemes and from an efficiency point of view is even comparable with other non-tight SPS schemes. In contrast to existing work, however, we only...

2019/847 (PDF) Last updated: 2020-01-28
Improved Heuristics for Short Linear Programs
Quan Quan Tan, Thomas Peyrin
Implementation

In this article, we propose new heuristics for minimizing the amount of XOR gates required to compute a system of linear equations in GF(2). We first revisit the well known Boyar-Peralta strategy and argue that a proper randomization process during the selection phases can lead to great improvements. We then propose new selection criteria and explain their rationale. Our new methods outperform state-of-the-art algorithms such as Paar or Boyar-Peralta (or open synthesis tools such as Yosys)...

2019/808 (PDF) Last updated: 2019-07-14
2-Message Publicly Verifiable WI from (Subexponential) LWE
Alex Lombardi, Vinod Vaikuntanathan, Daniel Wichs

We construct a 2-message publicly verifiable witness indistinguishable argument system for NP assuming that the Learning with Errors (LWE) problem is subexponentially hard. Moreover, the protocol is ``delayed input''; that is, the verifier message in this protocol does not depend on the instance. This means that a single verifier message can be reused many times. We construct two variants of this argument system: one variant is adaptively sound, while the other is public-coin (but only...

2019/805 (PDF) Last updated: 2020-03-18
RRTxFM: Probabilistic Counting for Differentially Private Statistics
Saskia Nuñez von Voigt, Florian Tschorsch
Applications

Data minimization has become a paradigm to address privacy concerns when collecting and storing personal data. In this paper we present two new approaches, RSTxFM and RRTxFM, to estimate the cardinality of a dataset while ensuring differential privacy. We argue that privacy-preserving cardinality estimators are able to realize strong privacy requirements. Both approaches are based on a probabilistic counting algorithm which has a logarithmic space complexity. We combine this with a...

2019/621 (PDF) Last updated: 2019-06-03
A Modified Simple Substitution Cipher With Unbounded Unicity Distance
Bruce Kallick
Secret-key cryptography

The classic simple substitution cipher is modified by randomly inserting key-defined noise characters into the ciphertext in encryption which are ignored in decryption. Interestingly, this yields a finite-key cipher system with unbounded unicity.

2019/387 (PDF) Last updated: 2019-04-16
SoK : On DFA Vulnerabilities of Substitution-Permutation Networks
Mustafa Khairallah, Xiaolu Hou, Zakaria Najm, Jakub Breier, Shivam Bhasin, Thomas Peyrin
Secret-key cryptography

Recently, the NIST launched a competition for lightweight cryptography and a large number of ciphers are expected to be studied and analyzed under this competition. Apart from the classical security, the candidates are desired to be analyzed against physical attacks. Differential Fault Analysis (DFA) is an invasive physical attack method for recovering key information from cipher implementations. Up to date, almost all the block ciphers have been shown to be vulnerable against DFA, while...

2019/321 (PDF) Last updated: 2019-03-29
Horizontal Collision Correlation Attack on Elliptic Curves
Aurélie Bauer, Eliane Jaulmes, Emmanuel Prouff, Jean-René Reinhard, Justine Wild
Implementation

Elliptic curves based algorithms are nowadays widely spread among embedded systems. They indeed have the double advantage of providing efficient implementations with short certicates and of being relatively easy to secure against side-channel attacks. As a matter of fact, when an algorithm with constant execution flow is implemented together with randomization techniques, the obtained design usually thwarts classical side-channel attacks while keeping good performances. Recently, a new...

2019/058 (PDF) Last updated: 2020-02-27
Tightly secure hierarchical identity-based encryption
Roman Langrehr, Jiaxin Pan
Public-key cryptography

We construct the first tightly secure hierarchical identity-based encryption (HIBE) scheme based on standard assumptions, which solves an open problem from Blazy, Kiltz, and Pan (CRYPTO 2014). At the core of our constructions is a novel randomization technique that enables us to randomize user secret keys for identities with flexible length. The security reductions of previous HIBEs lose at least a factor of Q, which is the number of user secret key queries. Different to that, the security...

2019/030 Last updated: 2019-01-21
Analysis of Two Countermeasures against the Signal Leakage Attack
Ke Wang, Zhenfeng Zhang
Cryptographic protocols

In 2017, a practical attack, referred to as the signal leakage attack, against reconciliation-based RLWE key exchange protocols was proposed. In particular, this attack can recover a long-term private key if a key pair is reused. Directly motivated by this attack, recently, Ding et al. proposed two countermeasures against the attack. One is the RLWE key exchange protocol with reusable keys (KERK), which is included in the Ding Key Exchange, a NIST submission. The idea for this construction...

2018/1192 (PDF) Last updated: 2018-12-18
Durandal: a rank metric based signature scheme
Nicolas Aragon, Olivier Blazy, Philippe Gaborit, Adrien Hauteville, Gilles Zémor
Cryptographic protocols

We describe a variation of the Schnorr-Lyubashevsky approach to devising signature schemes that is adapted to rank based cryptography. This new approach enables us to obtain a randomization of the signature, which previously seemed difficult to derive for code-based cryptography. We provide a detailed analysis of attacks and an EUF-CMA proof for our scheme. Our scheme relies on the security of the Ideal Rank Support Learning and the Ideal Rank Syndrome problems and a newly introduced...

2018/1129 (PDF) Last updated: 2021-06-24
On Kilian's Randomization of Multilinear Map Encodings
Jean-Sebastien Coron, Hilder V. L. Pereira
Public-key cryptography

Indistinguishability obfuscation constructions based on matrix branching programs generally proceed in two steps: first apply Kilian's randomization of the matrix product computation, and then encode the matrices using a multilinear map scheme. In this paper we observe that by applying Kilian's randomization after encoding, the complexity of the best attacks is significantly increased for CLT13 multilinear maps. This implies that much smaller parameters can be used, which improves the...

2018/1127 (PDF) Last updated: 2018-11-29
Freestyle, a randomized version of ChaCha for resisting offline brute-force and dictionary attacks
P. Arun Babu, Jithin Jose Thomas
Secret-key cryptography

This paper introduces Freestyle, a randomized, and variable round version of the ChaCha cipher. Freestyle demonstrates the concept of hash based halting condition, where a decryption attempt with an incorrect key is likely to take longer time to halt. This makes it resistant to key-guessing attacks i.e. brute-force and dictionary based attacks. Freestyle uses a novel approach for ciphertext randomization by using random number of rounds for each block of message, where the exact number of...

2018/993 (PDF) Last updated: 2018-10-22
The Multi-user Security of GCM, Revisited: Tight Bounds for Nonce Randomization
Viet Tung Hoang, Stefano Tessaro, Aishwarya Thiruvengadam
Cryptographic protocols

Multi-user (mu) security considers large-scale attackers (e.g., state actors) that given access to a number of sessions, attempt to compromise {\em at least} one of them. Mu security of authenticated encryption (AE) was explicitly considered in the development of TLS 1.3. This paper revisits the mu security of GCM, which remains to date the most widely used dedicated AE mode. We provide new concrete security bounds which improve upon previous work by adopting a refined parameterization of...

2018/503 (PDF) Last updated: 2018-05-26
Finger Printing Data
Gideon Samid
Applications

By representing data in a unary way, the identity of the bits can be used as a printing pad to stain the data with the identity of its handlers. Passing data will identify its custodians, its pathway, and its bona fide. This technique will allow databases to recover from a massive breach as the thieves will be caught when trying to use this 'sticky data'. Heavily traveled data on networks will accumulate the 'fingerprints' of its holders, to allow for a forensic analysis of fraud attempts,...

2018/420 (PDF) Last updated: 2020-07-13
Lattice-based Revocable (Hierarchical) IBE with Decryption Key Exposure Resistance
Shuichi Katsumata, Takahiro Matsuda, Atsushi Takayasu
Public-key cryptography

Revocable identity-based encryption (RIBE) is an extension of IBE that supports a key revocation mechanism; an indispensable feature for practical cryptographic schemes. Due to this extra feature, RIBE is often required to satisfy a strong security notion unique to the revocation setting called decryption key exposure resistance (DKER). Additionally, hierarchal IBE (HIBE) is another orthogonal extension of IBE that supports key delegation functionalities allowing for scalable deployments of...

2018/394 (PDF) Last updated: 2018-05-01
Almost-Surely Terminating Asynchronous Byzantine Agreement Revisited
Laasya Bangalore, Ashish Choudhury, Arpita Patra

The problem of Byzantine Agreement (BA) is of interest to both distributed computing and cryptography community. Following well-known results from the distributed computing literature, BA problem in the asynchronous network setting encounters inevitable non-termination issues. The impasse is overcome via randomization that allows construction of BA protocols in two flavours of termination guarantee -- with overwhelming probability and with probability one. The latter type termed as...

2018/291 (PDF) Last updated: 2018-03-28
Simulations of Optical Emissions for Attacking AES and Masked AES
Guido Marco Bertoni, Lorenzo Grassi, Filippo Melzani

In this paper we present a novel attack based on photonic emission analysis targeting software implementations of AES. We focus on the particular case in which the attacker can collect the photonic emission of a limited number of sense amplifiers (e.g. only one) of the SRAM storing the S-Box. The attack consists in doing hypothesis on the secret key based on the knowledge of the partial output of the SubBytes operation. We also consider the possibility to attack a masked implementation of...

2018/016 (PDF) Last updated: 2018-01-04
New Techniques for Public Key Encryption with Sender Recovery
Murali Godi, Roopa Vishwanathan

In this paper, we consider a scenario where a sender transmits ciphertexts to multiple receivers using a public-key encryption scheme, and at a later point of time, wants to retrieve the plaintexts, without having to request the receivers' help in decrypting the ciphertexts, and without having to locally store a separate recovery key for every receiver the sender interacts with. This problem, known as public key encryption with sender recovery has intuitive solutions based on hybrid...

2018/009 (PDF) Last updated: 2018-01-02
Evaluation of Resilience of randomized RNS implementation
Jérôme Courtois, Lokman Abbas-Turki, Jean-Claude Bajard
Implementation

Randomized moduli in Residue Number System (RNS) generate effectively large noise and make quite difficult to attack a secret key $K$ from only few observations of Hamming distances $H=(H_0, ..., H_{d-1})$ that result from the changes on the state variable. Since Hamming distances have gaussian distribution and most of the statistic tests, like NIST's ones, evaluate discrete and uniform distribution, we choose to use side-channel attacks as a tool in order to evaluate randomisation of...

2017/1204 (PDF) Last updated: 2017-12-31
Horizontal Clustering Side-Channel Attacks on Embedded ECC Implementations (Extended Version)
Erick Nascimento, Lukasz Chmielewski
Implementation

Side-channel attacks are a threat to cryptographic algorithms running on embedded devices. Public-key cryptosystems, including elliptic curve cryptography (ECC), are particularly vulnerable because their private keys are usually long-term. Well known countermeasures like regularity, projective coordinates and scalar randomization, among others, are used to harden implementations against common side-channel attacks like DPA. Horizontal clustering attacks can theoretically overcome these...

2017/1098 (PDF) Last updated: 2017-11-11
The Strength of Weak Randomization: Efficiently Searchable Encryption with Minimal Leakage
David Pouliot, Scott Griffy, Charles V. Wright
Applications

Efficiently searchable and easily deployable encryption schemes enable an untrusted, legacy service such as a relational database engine to perform searches over encrypted data. The ease with which such schemes can be deployed on top of existing services makes them especially appealing in operational environments where encryption is needed but it is not feasible to replace large infrastructure components like databases or document management systems. Unfortunately all previously known...

2017/882 (PDF) Last updated: 2017-09-17
Towards an in-depth understanding of privacy parameters for randomized sanitization mechanisms
Baptiste Olivier, Tony Quertier

Differential privacy, and close other notions such as $d_\chi$-privacy, is at the heart of the privacy framework when considering the use of randomization to ensure data privacy. Such a guarantee is always submitted to some trade-off between the privacy level and the accuracy of the result. While a privacy parameter of the differentially private algorithms leverages this trade-off, it is often a hard task to choose a meaningful value for this numerical parameter. Only a few works have...

2017/323 (PDF) Last updated: 2018-08-23
Revocable Identity-based Encryption with Bounded Decryption Key Exposure Resistance: Lattice-based Construction and More
Atsushi Takayasu, Yohei Watanabe
Public-key cryptography

In general, identity-based encryption (IBE) does not support an efficient revocation procedure. In ACM CCS'08, Boldyreva et al. proposed revocable identity-based encryption (RIBE), which enables us to efficiently revoke (malicious) users in IBE. In PKC 2013, Seo and Emura introduced an additional security notion for RIBE, called decryption key exposure resistance (DKER). Roughly speaking, RIBE with DKER guarantees that the security is not compromised even if an adversary gets (a number of)...

2017/269 (PDF) Last updated: 2017-03-25
Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks
Okan Seker, Thomas Eisenbarth, Rainer Steinwandt
Secret-key cryptography

Side channel analysis and fault attacks are two powerful methods to analyze and break cryptographic implementations. Recently, secure multiparty computation has been applied to prevent side channel attacks. While multiparty computation is known to be fault resistant as well, the particular schemes popular for side channel protection do not currently offer this feature. In this paper we introduce a new secure multiparty circuit to prevent both fault attacks and side channel analysis. The new...

2017/055 (PDF) Last updated: 2017-01-31
A Probabilistic Baby-Step Giant-Step Algorithm
Prabhat Kushwaha, Ayan Mahalanobis
Public-key cryptography

In this paper, a new algorithm to solve the discrete logarithm problem is presented which is similar to the usual baby-step giant-step algorithm. Our algorithm exploits the order of the discrete logarithm in the multiplicative group of a finite field. Using randomization with parallelized collision search, our algorithm indicates some weakness in NIST curves over prime fields which are considered to be the most conservative and safest curves among all NIST curves.

2016/990 (PDF) Last updated: 2020-02-12
Revisiting the Wrong-Key-Randomization Hypothesis
Tomer Ashur, Tim Beyne, Vincent Rijmen
Secret-key cryptography

Linear cryptanalysis is considered to be one of the strongest techniques in the cryptanalyst’s arsenal. In most cases, Matsui’s Algorithm 2 is used for the key recovery part of the attack. The success rate analysis of this algorithm is based on an assumption regarding the bias of a linear approximation for a wrong key, known as the wrong-key-randomization hypothesis. This hypothesis was refined by Bogdanov and Tischhauser to take into account the stochastic nature of the bias for a wrong...

2016/667 (PDF) Last updated: 2018-02-23
Multivariate Profiling of Hulls for Linear Cryptanalysis
Andrey Bogdanov, Elmar Tischhauser, Philip S. Vejre

Extensions of linear cryptanalysis making use of multiple approximations, such as multiple and multidimensional linear cryptanalysis, are an important tool in symmetric-key cryptanalysis, among others being responsible for the best known attacks on ciphers such as Serpent and PRESENT. At CRYPTO 2015, Huang et al. provided a refined analysis of the key-dependent capacity leading to a refined key equivalence hypothesis, however at the cost of additional assumptions. Their analysis was...

2016/564 (PDF) Last updated: 2017-11-27
The Multi-User Security of Authenticated Encryption: AES-GCM in TLS 1.3
Mihir Bellare, Bjoern Tackmann
Secret-key cryptography

We initiate the study of multi-user (mu) security of authenticated encryption (AE) schemes as a way to rigorously formulate, and answer, questions about the "randomized nonce" mechanism proposed for the use of the AE scheme GCM in TLS 1.3. We (1) Give definitions of mu ind (indistinguishability) and mu kr (key recovery) security for AE (2) Characterize the intent of nonce randomization as being improved mu security as a defense against mass surveillance (3) Cast the method as a (new) AE...

2016/476 (PDF) Last updated: 2016-05-20
Groth-Sahai Proofs Revisited Again: A Bug in ``Optimized'' Randomization
Keita Xagawa
Cryptographic protocols

The Groth-Sahai proof system (EUROCRYPT 2008, SIAM Journal of Computing 41(5)) provides efficient non-interactive witness-indistinguishable (NIWI) and zero-knowledge (NIZK) proof systems for languages over bilinear groups and is a widely-used versatile tool to design efficient cryptographic schemes and protocols. We revisit randomization of the prover in the GS proof system. We find an unnoticed bug in the ``optimized'' randomization in the symmetric bilinear setting with several...

2016/474 (PDF) Last updated: 2016-05-19
T-Proof: Secure Communication via Non-Algorithmic Randomization
Gideon Samid
Cryptographic protocols

shared random strings are either communicated or recreated algorithmically in “pseudo” mode, thereby exhibiting innate vulnerability. Proposing a secure protocol based on unshared randomized data, which therefore can be based on ‘white noise’ or other real-world, non algorithmic randomization. Prospective use of this T-Proof protocol includes proving possession of data to a party in possession of same data. The principle: Alice wishes to prove to Bob that she is in possession of secret data...

2016/350 (PDF) Last updated: 2018-02-20
Probabilistic Termination and Composability of Cryptographic Protocols
Ran Cohen, Sandro Coretti, Juan Garay, Vassilis Zikas
Cryptographic protocols

When analyzing the round complexity of multi-party protocols, one often overlooks the fact that underlying resources, such as a broadcast channel, can by themselves be expensive to implement. For example, it is well known that it is impossible to implement a broadcast channel by a (deterministic) protocol in a sub-linear (in the number of corrupted parties) number of rounds. The seminal works of Rabin and Ben-Or from the early 80's demonstrated that limitations as the above can be overcome...

2016/095 (PDF) Last updated: 2016-02-05
Obfuscation without Multilinear Maps
Dingfeng Ye, Peng Liu
Foundations

Known methods for obfuscating a circuit need to represent the circuit as a branching program and then use a multilinear map to encrypt the branching program. Multilinear maps are, however, too inefficient for encrypting the branching program. We found a dynamic encoding method which effectively singles out different inputs in the context of the matrix randomization technique of Kilian and Gentry et al., so that multilinear maps are no longer needed. To make the method work, we need the...

2015/1130 (PDF) Last updated: 2017-02-14
A Note on Perfect Correctness by Derandomization
Nir Bitansky, Vinod Vaikuntanathan
Foundations

In this note, we show how to transform a large class of erroneous cryptographic schemes into perfectly correct ones. The transformation works for schemes that are correct on every input with probability noticeably larger than half, and are secure under parallel repetition. We assume the existence of one-way functions and of functions with deterministic (uniform) time complexity $2^{O(n)}$ and non-deterministic circuit complexity $2^{\Omega(n)}$. The transformation complements previous...

2015/932 (PDF) Last updated: 2015-09-27
Using Tweaks To Design Fault Resistant Ciphers
Sikhar Patranabis, Debapriya Basu Roy, Debdeep Mukhopadhyay
Secret-key cryptography

Side channel analysis and active fault analysis are now major threats to even mathematically robust cryptographic algorithms that are otherwise resistant to classical cryptanalysis. It is necessary to design suitable countermeasures to protect cryptographic primitives against such attacks. This paper focuses on designing encryption schemes that are innately secure against fault analysis. The paper formally proves that one such design strategy, namely the use of key-dependent SBoxes, is...

2015/925 (PDF) Last updated: 2015-12-10
Exploiting the Order of Multiplier Operands: A Low Cost Approach for HCCA Resistance
Poulami Das, Debapriya Basu Roy, Debdeep Mukhopadhyay

Horizontal collision correlation analysis (HCCA) imposes a serious threat to simple power analysis resistant elliptic curve cryptosystems involving unified algorithms, for e.g. Edward curve unified formula. This attack can be mounted even in presence of differential power analysis resistant randomization schemes. In this paper we have designed an effective countermeasure for HCCA protection, where the dependency of side-channel leakage from a school-book multiplication with the underling...

2015/699 (PDF) Last updated: 2015-07-14
FURISC: FHE Encrypted URISC Design
Ayantika Chatterjee, Indranil Sengupta

This paper proposes design of a Fully Homomorphic Ultimate RISC (FURISC) based processor. The FURISC architecture supports arbitrary operations on data encrypted with Fully Homomorphic Encryption (FHE) and allows the execution of encrypted programs stored in processors with encrypted memory addresses. The FURISC architecture is designed based on fully homomorphic single RISC instructions like {\em Subtract Branch if Negative} (SBN) and {\em MOVE}. This paper explains how the use of FHE for...

2015/493 (PDF) Last updated: 2015-05-25
Fault Tolerant Infective Countermeasure for AES
Sikhar Patranabis, Abhishek Chakraborty, Debdeep Mukhopadhyay

Infective countermeasures have been a promising class of fault attack countermeasures. However, they have been subjected to several attacks owing to lack of formal proofs of security and improper implementations. In this paper, we first provide a formal information theoretic proof of security for one of the most recently proposed infective countermeasures against DFA, under the assumption that the adversary does not change the flow sequence or skip any instruction. Subsequently, we identify...

2014/959 (PDF) Last updated: 2014-11-25
Attacking Suggest Boxes in Web Applications Over HTTPS Using Side-Channel Stochastic Algorithms
Alexander Schaub, Emmanuel Schneider, Alexandros Hollender, Vinicius Calasans, Laurent Jolie, Robin Touillon, Annelie Heuser, Sylvain Guilley, Olivier Rioul
Implementation

Web applications are subject to several types of attacks. In particular, side-channel attacks consist in performing a statistical analysis of the web traffic to gain sensitive information about a client. In this paper, we investigate how side-channel leaks can be used on search engines such as Google or Bing to retrieve the client's search query. In contrast to previous works, due to payload randomization and compression, it is not always possible to uniquely map a search query to a web...

2014/944 (PDF) Last updated: 2021-01-21
Structure-Preserving Signatures on Equivalence Classes and Constant-Size Anonymous Credentials
Georg Fuchsbauer, Christian Hanser, Daniel Slamanig
Cryptographic protocols

Structure-preserving signatures (SPS) are a powerful building block for cryptographic protocols. We introduce SPS on equivalence classes (SPS-EQ), which allow joint randomization of messages and signatures. Messages are projective equivalence classes defined on group element vectors, so multiplying a vector by a scalar yields a different representative of the same class. Our scheme lets one adapt a signature for one representative to a signature for another representative without knowledge...

2014/691 (PDF) Last updated: 2014-09-04
Integration of hardware tokens in the Idemix library
Antonio de la Piedra

The Idemix library provides the implementation of the Camenisch-Lysyanskaya (CL) Attribute-based Credential System (ABC), its protocol extensions and the U-Prove ABC. In the case of the CL ABC, the library can delegate some cryptographic operations to a hardware token (e.g. a smart card). In the last few years several practitioners have proposed different implementations of ABCs in smart cards. The IRMA card provides at the time of writing this manuscript, an optimal performance for...

2014/487 (PDF) Last updated: 2014-06-23
GGHLite: More Efficient Multilinear Maps from Ideal Lattices
Adeline Langlois, Damien Stehle, Ron Steinfeld
Public-key cryptography

The GGH Graded Encoding Scheme, based on ideal lattices, is the first plausible approximation to a cryptographic multilinear map. Unfortunately, using the security analysis in the original paper, the scheme requires very large parameters to provide security for its underlying encoding re-randomization process. Our main contributions are to formalize, simplify and improve the efficiency and the security analysis of the re-randomization process in the GGH construction. This results in a new...

2014/265 (PDF) Last updated: 2014-04-21
Dual System Groups and its Applications --- Compact HIBE and More
Jie Chen, Hoeteck Wee
Public-key cryptography

We introduce the notion of *dual system groups*. - We show how to derive compact HIBE by instantiating the dual system framework in Waters (Crypto '09) and Lewko and Waters (TCC '10) with dual system groups. Our construction provides a unified treatment of the prior compact HIBE schemes from static assumptions. - We show how to instantiate dual system groups under the decisional subgroup assumption in composite-order groups and the decisional linear assumption ($d$-LIN) in prime-order...

2014/191 (PDF) Last updated: 2014-09-22
Side-Channel Analysis on Blinded Regular Scalar Multiplications
Benoit Feix, Mylène Roussellet, Alexandre Venelli

We present a new side-channel attack path threatening state-of-the-art protected implementations of elliptic curves embedded scalar multiplications. Regular algorithms such as the double-and-add-always and the Montgomery ladder are commonly used to protect the scalar multiplication from simple side-channel analysis. Combining such algorithms with scalar and/or point blinding countermeasures lead to scalar multiplications protected from all known attacks. Scalar randomization, which consists...

2014/095 (PDF) Last updated: 2014-02-14
Unified, Minimal and Selectively Randomizable Structure-Preserving Signatures
Masayuki Abe, Jens Groth, Miyako Ohkubo, Mehdi Tibouchi
Public-key cryptography

We construct a structure-preserving signature scheme that is selectively randomizable and works in all types of bilinear groups. We give matching lower bounds showing that our structure-preserving signature scheme is optimal with respect to both signature size and public verification key size. State of the art structure-preserving signatures in the asymmetric setting consist of 3 group elements, which is known to be optimal. Our construction preserves the signature size of 3 group elements...

2013/500 (PDF) Last updated: 2013-08-15
Obfuscating Branching Programs Using Black-Box Pseudo-Free Groups
Ran Canetti, Vinod Vaikuntanathan
Secret-key cryptography

We show that the class of polynomial-size branching programs can be obfuscated according to a virtual black-box notion akin to that of Barak et al. [Crypto 01], in an idealized black-box group model over pseudo-free groups. This class is known to lie between $NC^1$ and $P$ and includes most interesting cryptographic algorithms. The construction is rather simple and is based on Kilian's randomization technique for Barrington's branching programs. The black-box group model over pseudo-free...

2013/384 (PDF) Last updated: 2013-06-17
Sequential Aggregate Signatures Made Shorter
Kwangsu Lee, Dong Hoon Lee, Moti Yung
Public-key cryptography

Sequential aggregate signature (SAS) is a special type of public-key signature that allows a signer to add his signature into a previous aggregate signature in sequential order. In this case, since many public keys are used and many signatures are employed and compressed, it is important to reduce the sizes of signatures and public keys. Recently, Lee, Lee, and Yung (PKC 2013) proposed an efficient SAS scheme with short public keys and proved its security without random oracles under static...

2013/264 (PDF) Last updated: 2013-10-23
Encrypted Secret Sharing and Analysis by Plaintext Randomization
Stephen R. Tate, Roopa Vishwanathan, Scott Weeks
Public-key cryptography

In this paper we consider the problem of secret sharing where shares are encrypted using a public-key encryption (PKE) scheme and ciphertexts are publicly available. While intuition tells us that the secret should be protected if the PKE is secure against chosen-ciphertext attacks (i.e., CCA-secure), formally proving this reveals some subtle and non-trivial challenges. We isolate the problems that this raises, and devise a new analysis technique called ``plaintext randomization'' that can...

2013/220 (PDF) Last updated: 2013-04-14
Towards Efficient Private Distributed Computation on Unbounded Input Streams
Shlomi Dolev, Juan Garay, Niv Gilboa, Vladimir Kolesnikov, Yelena Yuditsky
Cryptographic protocols

In the problem of private ``swarm'' computing, $n$ agents wish to securely and distributively perform a computation on common inputs, in such a way that even if the entire memory contents of some of them are exposed, no information is revealed about the state of the computation. Recently, Dolev, Garay, Gilboa and Kolesnikov [ICS 2011] considered this problem in the setting of information-theoretic security, showing how to perform such computations on input streams of {\em unbounded length}. ...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.