Dates are inconsistent

Dates are inconsistent

5 results sorted by ID

2024/1291 (PDF) Last updated: 2024-08-16
Raccoon: A Masking-Friendly Signature Proven in the Probing Model
Rafaël del Pino, Shuichi Katsumata, Thomas Prest, Mélissa Rossi
Public-key cryptography

This paper presents Raccoon, a lattice-based signature scheme submitted to the NIST 2022 call for additional post-quantum signatures. Raccoon has the specificity of always being masked. Concretely, all sensitive intermediate values are shared into 𝑑 parts. The main design rationale of Raccoon is to be easy to mask at high orders, and this dictated most of its design choices, such as the introduction of new algorithmic techniques for sampling small errors. As a result, Raccoon achieves a...

2024/1033 (PDF) Last updated: 2024-06-26
Adaptively Secure 5 Round Threshold Signatures from MLWE/MSIS and DL with Rewinding
Shuichi Katsumata, Michael Reichle, Kaoru Takemure
Cryptographic protocols

T-out-of-N threshold signatures have recently seen a renewed interest, with various types now available, each offering different tradeoffs. However, one property that has remained elusive is adaptive security. When we target thresholdizing existing efficient signatures schemes based on the Fiat-Shamir paradigm such as Schnorr, the elusive nature becomes clear. This class of signature schemes typically rely on the forking lemma to prove unforgeability. That is, an adversary is rewound and...

2024/401 (PDF) Last updated: 2024-03-05
Plover: Masking-Friendly Hash-and-Sign Lattice Signatures
Muhammed F. Esgin, Thomas Espitau, Guilhem Niot, Thomas Prest, Amin Sakzad, Ron Steinfeld
Public-key cryptography

We introduce a toolkit for transforming lattice-based hash-and-sign signature schemes into masking-friendly signatures secure in the t-probing model. Until now, efficiently masking lattice-based hash-and-sign schemes has been an open problem, with unsuccessful attempts such as Mitaka. A first breakthrough was made in 2023 with the NIST PQC submission Raccoon, although it was not formally proven. Our main conceptual contribution is to realize that the same principles underlying Raccoon...

2024/184 (PDF) Last updated: 2024-02-07
Threshold Raccoon: Practical Threshold Signatures from Standard Lattice Assumptions
Rafael del Pino, Shuichi Katsumata, Mary Maller, Fabrice Mouhartem, Thomas Prest, Markku-Juhani Saarinen
Cryptographic protocols

Threshold signatures improve both availability and security of digital signatures by splitting the signing key into $N$ shares handed out to different parties. Later on, any subset of at least $T$ parties can cooperate to produce a signature on a given message. While threshold signatures have been extensively studied in the pre-quantum setting, they remain sparse from quantum-resilient assumptions. We present the first efficient lattice-based threshold signatures with signature size 13...

2023/1117 (PDF) Last updated: 2023-07-18
Mask Compression: High-Order Masking on Memory-Constrained Devices
Markku-Juhani O. Saarinen, Mélissa Rossi
Implementation

Masking is a well-studied method for achieving provable security against side-channel attacks. In masking, each sensitive variable is split into $d$ randomized shares, and computations are performed with those shares. In addition to the computational overhead of masked arithmetic, masking also has a storage cost, increasing the requirements for working memory and secret key storage proportionally with $d$. In this work, we introduce mask compression. This conceptually simple technique is...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.